T“ Bilkent University
o

. %@g N Department of Computer Engineering

CS 353 - Database Systems Project

“Track by Me”

Final Report

Project Group Number: 18
Project Group Members:

Gokcan Degirmenci, Onur S6nmez, Fatih Tas, Orcun Yalgin

Supervisor & Course Instructor: Asst. Prof. Dr. Hamdi Dibeklioglu

Submitted at November 20, 2017

Description

Final E/R Diagram

Relation Schemas

3.1
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.
3.10
3.11
3.12
3.13

3.14.
3.15.
3.16.
3.17.
3.18.
3.19.
3.20.
3.21.
3.22.
3.23.
3.23.
3.24.
3.25.
3.26.
3.27.
3.28.
3.29.
3.30.
3.31.
3.32.

User

Friendship

TV Show

Season

Episode
Comment

Watch

Show Comment
Season Comment
. Episode Comment
. Show Watch

. Season Watch

. Episode Watch
Rate

Show Rate
Season Rate
Episode Rate
Subscribe
Reaction
Comment Reaction
Watch Reaction
Notification
Movie

Similar Movie
Movie Comment
Movie Rate
Cast

Act

Show Act

Movie Act
Medium
Scheduled Episode
Movie Watch

Implementation details

® OO0 NNSNSNSN~NSNNNOOOODOODODODODOODOODT OO oo hdADMDMDMRMAMLALDMNA W N

Advanced DB features 9

Constraints 9
Views 10
Connection Pooling 10
Secondary Indexes 10
Triggers and Stored Procedures 11
Reports 13
User's Manual 15
Regular User Guide 17
Admin Guide 19

1. Description

Trackby.me is a comprehensive web-based application for tracking TV shows and
movies. The system is designed to show all details of tv shows, movies, cast, medium
and more. As well as monitoring all of these, also it provides much more features like
rating, watching, subscribing, commenting on movies and tv shows. Additionally, it
supports several social media capabilities for users like becoming friends with other
users and evaluating their activities by commenting, putting reaction on them.

In general, two types of users are included. One of them is the admin who may modify
almost all parts of system other than user private credentials. Admin may add, delete,
update tv shows, movies, cast and medium. Nevertheless, non-admin users cannot
make any of these actions. They may request a friendship, mark movies, episodes,
seasons or tv shows as watched, rate them, and put comment on their pages.
Remember that users must register to the system to be able to make all of these
actions. After creating their profiles, they may update their profiles in any time.

Also all the actions of users are recorded and other users will be able to see their
activities. Thus, communication between users are enabled through adding comment
on their displayed actions and reacting them by using emojis which are similar to
Facebook emojis.

2. Final E/R Diagram

ajep asealal
n"Ia)es

1B patepdn
¥ LT
aiueh

1n”aBew)
uondusspslhow
Weu sInowW

pl

aINON

ojEm 810w

gjei ainow

QINOW™B(ILIS

UBLILIOT BIAOLL

80150NS

UN0Y”UosESS

In"18|len
Jeakuels
1e"pajepdn
e paleasn
oI mous
n~aBew
el Moys
pl

MOys

IJBM MOUS

UOSES MOUS

B[O
b
oy
aposidemoys
[Tnog"8posida |
un"sejiesn
I~ abew) N
0U”U0SEES oju|"aposide
- Jeak"uoseas s abew
ojuI"uoseas apos|da”Uoseas aweu"aposida anpayas
BUBUTUOSESS ou~aposida
il pi
uoseas aposida

UBLLILO"NOLS aeruosens ™ & UoienUosess s (auwosuosedy < o aposida > (Loieieposids

[W paean|
¥ paiepdn
ojuljseD
1n~abew;
allIBU [eal
BlEUT|SED

o

1889

ETUREENT]
oJul wnipaw
aweu wnipaw

P wnpedm

TN UBWL03aNS

UDJJEDYION

1€ pajeald
Buges

ajey

el Jasn

1B pajEsio
1e"pajepdn
Uwpys!
afie
piomssed
ews
slUeLIasN
pi

Jasn

& peean e paiean

o . fooq

- i Justwos yaje PRI

B JUETII g}
01joE8) JUBWIWOJ
[Ulohis1:ET T 0) |_ _|_
uopeay
SMIEIS djuspualy ~
pIrdiyspuaiy JuBlIWoY Jesn

wnipap

2. Relation Schemas

3.1. User

users (id, username, password, email, age, isAdmin)

3.2. Friendship

friendship (first_user_id FK(users(id)). second user id FK(users(id)), status, action_user_id)

3.3. TV Show

tvshow (id. info, show_name, image_url, trailer_url, season_count)

3.4. Season

season(id, show_id FK(show_id)), season_no, info, season_year, image_url, trailer_url,
episode_count)

3.5. Episode

episode(id, show _id FK(tvshow(id), season_id FK(season(id)), episode_no, episode_info,
image_url, trailer_url)

3.6. Comment

comment(id, parent_id FK(comment(id)), user_id FK(users(id)), body, subcomment_count)

3.7. Watch
watch(id, user_id FK(users(id)))

3.8. Show Comment

show_comment(show id FK(tvshow(id)), comment _id FK(comment(id)))

3.9. Season Comment

season_comment(season_id FK(season(id)), comment_id FK(comment(id)))

3.10. Episode Comment

episode_comment(episode_comment FK(season(id)), comment._id FK(comment(id)))

3.11. Show Watch

show _watch(show id FK(tvshow(id)), watch_id FK(watch(id)))

3.12. Season Watch

season_watch(season_id FK(season(id)), watch_id FK(watch(id)))

3.13. Episode Watch

episode_watch(episode_id FK(episode(id)), watch_id FK(watch(id)))

3.14. Rate

rate(id, user_id FK(users(id)), rating)

3.15. Show Rate

show rate(show id FK(tvshow(id)), rate_id FK(rate(id)))

3.16. Season Rate

season_rate(season_id FK(season(id)), rate_id FK(rate(id)))

3.17. Episode Rate

episode_rate(episode_id FK(episode(id)), rate_id FK(rate(id)))

3.18. Subscribe

subscribe(show id FK(tvshow(id)), user id(users(id)))

3.19. Reaction

reaction(id, user_id FK(users(id)), reaction_type)

3.20. Comment Reaction

comment_reaction(comment_id FK(comment(id)). reaction_id FK(reaction(id)))

3.21. Watch Reaction
watch_reaction(watch_id FK(watch(id)), reaction_id FK(watch(id)))

3.22. Notification

notification(id, user_id FK(users(id)), n_status, n_text, link)

3.23. Movie

movie(id, movie_name, movie_description, genre, imdb_rating, trailer_url, relase_date)

3.23. Similar Movie

similar_movie(first_movie_id FK(movie(id)), second_movie_id FK(movie(id)))

3.24. Movie Comment

movie_comment(movie_id FK(movie(id)), comment_id FK(comment(id)))

3.25. Movie Rate

movie_rate(movie_id FK(movie(id)), rate_id FK(rate(id)))

3.26. Cast

cast(id, cast_name, real_name, image_url, cast_info)

3.27. Act

act(id, cast_id FK(cast(id)), role)

3.28. Show Act

show_act(act_id FK(act(id)), show_id FK(movie(id)))

3.29. Movie Act

movie_act(act_id FK(act(id)). movie_id FK(movie(id)))

3.30. Medium

medium(id, medium_name, info, image_url)

3.31. Scheduled Episode

scheduled_episode(medium_id FK(medium(id)), episode_id FK(episode(id)), time)

3.32. Movie Watch
movie_watch(movie_id FK(movie(id)), watch_id FK(watch(id)))

3. Implementation details

As we proposed in our initial report and further developed the application and
database design in design report, our project consists of three main parts:

e Frontend (Client)
Client side of TrackBy is built upon React.js JavaScript library and Semantic Ul
framework. It uses next generation JavaScript, modern Ul development techniques

such as state-based rendering and individual custom components for achieving
reliability, scalability and maintainability.

e Backend (Server)

Server side of our application is built upon Node.js runtime and Express.js web
framework. All of the server code is written in TypeScript. On the other hand, our
server act as a REST API, interacts with the persistence layer, make CRUD operations
and returns specific resources as a response for the requests coming from client side of
the application. It executes respective sql statements with the help of node-postgres
module.

In application and data security part, we try to implement best practices in TrackBy.
For instance, we encrypt the plain passwords coming from the client-side with bcrypt
algorithm with randomly generated salt and finally store the fuzzy-string password to
our database. If any case of breach occurs in our database, user credentials stay secure.

We also use token-based authentication (JWT) to identify the request senders and
appropriately give access to protected resources.

e Persistence Layer (Database)

We choose to use PostgreSQL as a relational database. Because it has advanced

technical features, broader range of data types (CITEXT, CIRCLE, etc.) and finally it is
fully open source software.

e Tools & Misc
We use git as version control and collaboration tool. We serve our source code in
GitHub as a public repository. Also we use task-management tool such as Trello for
better productivity.

e Problems & Challenges

To achieve smooth development experience, we need to define and also tweak
some config files such as tsconfig, tslint, .env, package.json. At first, it was trouble
for us. However, we did solve those problem after doing some research on internet.
Another challenge was to adapt and use the PostgreSQL’s own syntax (generally
same as the MySQL). So again we did read the documentation, took some tutorials
and voila!

4. Advanced DB features
e Constraints
Note: CITEXT is case insensitive character string type for postgres.

Friendship:

status CITEXT NOT NULL CHECK (
status IN ('PENDING', 'APPROVED', 'REJECTED')
)

CHECK (first_user_id < second_user_id)

Notification:

n_status CITEXT NOT NULL CHECK (
n_status IN ('WAITING', 'SEEN")
Act:

role CITEXT NOT NULL CHECK (
role IN ('ACTOR', 'DIRECTOR', 'WRITER')

Reaction:

reaction_type CITEXT NOT NULL CHECK (

reaction _type IN ('NONE', 'LIKE', 'LOVE', 'WOW', 'HAHA',
'SAD', 'ANGRY', 'THANKFUL')
)

e Views

CREATE VIEW public_user AS
SELECT id, username, email FROM users WHERE isAdmin = False

e Connection Pooling

It allows us to reduce database-related overhead when it's the sheer number of
physical connections dragging performance down. We use pooling method in all of
the server connections to our persistence layer, PostgreSQL database.

e Secondary Indexes

CREATE UNIQUE INDEX age_x ON users (age);
CREATE INDEX username_index ON users USING hash (username,
password);

username_index allows to perform login operation faster. Since the login query is
based on equality and uses the structure WHERE username=$1 AND
password=$2, hash based indexing is the best choice.

CREATE INDEX showname_index ON tvshow (show_name)

CREATE INDEX moviename_index ON movie (movie_name)

CREATE INDEX episode no_index ON episode USING btree (episode no)
CREATE INDEX season_no_index ON season USING btree (season_no)

Note: Some dbs provide default indexing for foreign keys but postgres does not do
this. And also this will help to speed up JOIN conditions.

10

CREATE INDEX show_comment_index ON show_comment(comment_id)
CREATE INDEX movie_ comment_index ON movie_comment(comment_id)
CREATE INDEX season_comment_index ON season_comment(comment_id)
CREATE INDEX episode_comment_index ON episode_comment(comment_id)
CREATE INDEX watch_index ON show _watch(watch _id)

CREATE INDEX movie_watch_index ON movie_watch(watch_id)

CREATE INDEX season_watch_index ON season_watch(watch_id)

CREATE INDEX episode_watch_index ON episode_watch(watch_id)
CREATE INDEX movie _rate_index ON movie_rate(rate_id)

CREATE INDEX show rate_index ON show_rate(rate_id)

CREATE INDEX season_rate_index ON season_rate(rate_id)

CREATE INDEX episode_rate_index ON episode rate(rate_id)

CREATE INDEX comment_reaction_index ON
comment_reaction(reaction_id)

CREATE INDEX watch reaction_index ON watch reaction(reaction_id)

e Triggers and Stored Procedures

-- SEASON COUNT UPDATE
CREATE OR REPLACE FUNCTION increase_season_count()
RETURNS trigger AS

$%
BEGIN
UPDATE tvshow SET season_count = season_count + 1
WHERE tvshow.id = NEW.show_id;
RETURN NEW;
END;
$$

LANGUAGE 'plpgsql’;

CREATE OR REPLACE FUNCTION decrease_season_count()
RETURNS trigger AS

$$
BEGIN
UPDATE tvshow SET season_count = season_count - 1
WHERE tvshow.id = OLD.show_id;
RETURN NEW;
END;
$$

LANGUAGE 'plpgsql’;

CREATE TRIGGER inc_season_count_trigger
AFTER INSERT

ON season
FOR EACH ROW
EXECUTE PROCEDURE increase_season_count();

CREATE TRIGGER dec_season_count_trigger
AFTER DELETE
ON season
FOR EACH ROW
EXECUTE PROCEDURE decrease_season_count();

-- EPISODE COUNT UPDATE
CREATE OR REPLACE FUNCTION increase_episode_count()
RETURNS trigger AS

$$
BEGIN
UPDATE season SET episode_count = episode_count + 1
WHERE season.id = NEW.season_id;
RETURN NEW;
END;
$$

LANGUAGE 'plpgsql’;

CREATE OR REPLACE FUNCTION decrease_episode count()
RETURNS trigger AS

$3
BEGIN
UPDATE season SET episode_count = episode_count - 1
WHERE season.id = OLD.season_id
RETURN NEW;
END;
$3

LANGUAGE 'plpgsql’;

CREATE TRIGGER inc_episode_count_trigger
AFTER INSERT
ON episode
FOR EACH ROW
EXECUTE PROCEDURE increase_episode_count();

CREATE TRIGGER dec_episode_count_trigger
AFTER DELETE
ON episode
FOR EACH ROW

12

EXECUTE PROCEDURE decrease_episode count();

-- SUBCOMMENT COUNT UPDATE
CREATE OR REPLACE FUNCTION increase_subcomment_count()
RETURNS trigger AS
$$
BEGIN
UPDATE comment SET subcomment_count = subcomment_count + 1
WHERE comment.id = NEW.parent_id;
RETURN NEW;
END;
$$
LANGUAGE 'plpgsql';

CREATE OR REPLACE FUNCTION decrease_comment_count()
RETURNS trigger AS

$$
BEGIN
UPDATE comment SET subcomment count = subcomment_count - 1
WHERE comement.id = OLD.parent_id
RETURN NEW;
END;
$$

LANGUAGE ‘'plpgsql’;

CREATE TRIGGER inc_subcomment_count_trigger
AFTER INSERT
ON comment
FOR EACH ROW
EXECUTE PROCEDURE increase_subcomment_count();

CREATE TRIGGER dec_subcomment_count_trigger
AFTER DELETE
ON comment
FOR EACH ROW
EXECUTE PROCEDURE decrease_subcomment_count();

e Reports

Rating of shows with highest number of rates
Query:

SELECT show_name, show_id, AVG(rating) as average_rating FROM rate

13

INNER JOIN show_rate ON show_rate.rate_id = rate.id
INNER JOIN tvshow ON tvshow.id = show_rate.show_id

WHERE show_rate.show_id

IN (
SELECT show_id FROM show_rate
GROUP BY show_id
ORDER BY COUNT(*) DESC LIMIT 3

)
GROUP BY show_id

Sample Result:

show_name show_id average_rating
Mr. Robot 5 9.5
Vikings 3 9.0
Gossip Girl 2 4.6
Rating Statistics of Users Who Rated Highest Number of Rates
Query:
SELECT
username,
AVG(rating) as average_rating,
stddev(rating) as rating_deviation,
COUNT(*) as rate_count
FROM users
INNER JOIN rate ON rate.user_id = users.id
GROUP BY users.id
ORDER_BY rate_count DESC
LIMIT 4
Sample Result:
username average_rating rating_deviation rate_count
fatih 8.1 2.3 40

14

gokcan 7.2 3.6 37

onur 8.5 04 28

orcun 4.6 3.8 19

5. User's Manual

Register

Already have an account?

Figure 1 - Register Screen

As it is shown in Figure 1, a user can create an account in the system by filling all
the fields in register screen and clicking Register button. If an error occurs while
creating the account, it will be displayed to user. If there is no error, then user will be
authenticated and redirected to homepage.

15

Figure 2- Login Screen

Figure 2 shows the login screen of the application. User can login to the system by
filling those fields and login. If an error occurs during the login process it will be
displayed to user and if there is no error then user will be authenticated and
redirected to homepage of users’ type e.g. Admin homepage if user is admin and
regular homepage otherwise.

16

5.1. Regular User Guide

MR. Robot ™ Directed by

Mr. Robot follows Elliot Alderson, a young computer Niels Arden Oplev
programmer with an anxiety_disorder, who is recruited Written by
by Mr Robot and his anarchist team of hackers Sam Esmail
fsociety'.
W 9.5 Rate Y Mark As Watched Subscribe 3 Seasons

oy
2017, USA, 9 episodes 2016, USA, 12 episodes 2015, USA, 10 episodes

Mr. Robot: Season 3 Mr. Robot: Season 2 5 Mr. Robot: Season 1

% 9.5 Rate vy W W95 Rateyy % 9.5 Ratety
Mark as Watched Watchec Mark as Watched

@y Christian Slater Rami Malek Carly Chaikin Martin Wallstrém Portia Doubleday

Show All Cast

Comments 1= Sort By

0 Write a comment

Donnie

@ Great show!!! Great cast!!!
R ®0 ®0 o &0 &o
V 5 Replies

Katie
o | love this show

Reply @3 @0 @0 &o @0 &0

Show More Comments...

Figure 3 - Example TV Show Page

Figure 3 shows an example TV Show page. Although Episode page, Season
page, Movie page shows different content, structure of their user interface is
similar. Therefore TV Show page is used as a sample to describe the actions
that a user can do on those pages.

At top side of the page there are watch and rate buttons. User can click

17

mark as watched button to mark this tv show as watched and rate button to
rate this tv show. At the bottom comments to the show is displayed. User can
create a new comment by using the text input above listed comments. User
can also reply to other comments by clicking the reply button on comment and
filling the text input that appears. Icons next to the reply button are reaction
buttons, using those buttons user can add a reaction to a comment and
remove it by clicking the button again.

Search for a movie, show, user, artist ﬁ '3 o

Donnie

o Dennis Remove From Friends List

Patrick Remove From Friends List

Figure 4 - Friends page

Figure 4 show the friend page. User can manage their friends from this
page. Using the pending friend requests section user can approve or deny a
friend request. Also user can remove anyone from friend list by using the
Remove from friends list button.

18

Search for a movie, show, user, artist ﬁ ‘3 o

ESHARNE

TUUrE EMANAD P~ E AW A ¥V EAMZC

Editors Choice of the Week: Star Wars: The Last Jedi

Three decades after the Empire's defeat, a new Directed by
threat arises in the\militant First Order. Stormtrooper J.) Abrams
defector Finn and spare parts scavenger Rey-are Written by
. : 1 - L Kasdan, J.J. Ab :
Eal;ghst ;p |n] lt(he Resistance's search for the missing R el ot earoe s
uke Skywalker.
Mark As Watched ¥ 9.5 Rateyy 2015

Today, 3:00 AM on USA Network Today, 2:00 AM on History
Mr. Robot SO03EQ7 Vikings SO5EQ1
eps3.6_fredrick+tanya.chk The Departed

Mr. Robot wants answers; the FBI closes in; Season premiere
Angela hits the rewind button.

Show All

Dennis commented on Star Wars: The Last Jedi
Great movie!!! Great cast!l!

Reply @3 @0 &0 o &0 &0

View All 5 Replies v

Kelly gave Mr. Robot Season 1 a rating of 9.7.
Reply ®3 ®0 ®0 &o &0 &0

Will marked Mr. Robot Season 1 Episode eps1.0_hellofriend.mov as watched

Reply @3 @0 &0 o &0 o

Figure 5 - Homepage

Figure 5 shows the homepage. On bottom part of the page users can see activities
of their friends and can comment on or send reaction to them. User can search for tv
shows, episodes, movies and users by using the search field at navigation bar.

5.2. Admin Guide

19

Search for a movie, show, user, artist ﬁ '3 0

+ +

Create TV Show Create Movie

+ -

Create TV Medium Create Artist

Figure 6 - Admin homepage
Besides the functionalities for regular users, admins can perform extra
operations on the system. Figure 6 shows the admin homepage. By using these
admin can create a new entity. Clicking one of these buttons shows a modal with
necessary input fields for entering the details of the entity.

20

Search for a movie, show, user, artist ﬁ '3 o

MR. Robot & Directed by #*

Mr. Robot follows Elliot Alderson, a young computer Niels Arden Oplev
programmer with an anxiety disorder, who is recruited \yritten by &
by Mr Robot and his anarchist team of hackers Sam Esmail
fsociety'. y
3 Seasons

Mr. Robot: Season 3 Mr. Robot: Season 2

y
2017, USA, 9 episodes 2016, USA, 12 episodes

@) Christian Slater = Rami Malek Carly Chaikin Martin Wallstrém
<) EE é Darlene g e

Show All Cast

Figure 7 - Admin Tv Show Page
Figure 7 shows how tv show page is displayed to an admin user. In terms of user
interface structure is similar to movie, season, episode pages. Thus Tv show
page is used as a sample for describing the admin operations on these pages.
There are several pencil icons on header part. Clicking these pencil icons make
the text next to them editable and by editing these texts admin can modify the
attributes of show. The plus icons in seasons section and in cast section allows
admin to add season and new artist to show. Clicking these buttons will also
display a modal similar to the ones on homepage. Red cross icons on seasons
and artists allows admin to remove them. Also by clicking the delete show button
at the header part , admin can delete the show.

21

