
 Bilkent University

CS 353 - Database Systems Project
“Track by Me”

Final Report

Project Group Number: 18

Project Group Members:
Gökcan Değirmenci, Onur Sönmez, Fatih Taş, Orçun Yalçın

Supervisor & Course Instructor:​ Asst. Prof. Dr. Hamdi Dibeklioğlu

Submitted at November 20, 2017

Description 2

Final E/R Diagram 3

Relation Schemas 4
3.1. User 4
3.2. Friendship 4
3.3. TV Show 4
3.4. Season 4
3.5. Episode 4
3.6. Comment 4
3.7. Watch 4
3.8. Show Comment 5
3.9. Season Comment 5
3.10. Episode Comment 5
3.11. Show Watch 5
3.12. Season Watch 5
3.13. Episode Watch 5
3.14. Rate 5
3.15. Show Rate 6
3.16. Season Rate 6
3.17. Episode Rate 6
3.18. Subscribe 6
3.19. Reaction 6
3.20. Comment Reaction 6
3.21. Watch Reaction 6
3.22. Notification 6
3.23. Movie 7
3.23. Similar Movie 7
3.24. Movie Comment 7
3.25. Movie Rate 7
3.26. Cast 7
3.27. Act 7
3.28. Show Act 7
3.29. Movie Act 7
3.30. Medium 7
3.31. Scheduled Episode 8
3.32. Movie Watch 8

Implementation details 8

1

Advanced DB features 9
Constraints 9
Views 10
Connection Pooling 10
Secondary Indexes 10
Triggers and Stored Procedures 11
Reports 13

User's Manual 15
Regular User Guide 17
Admin Guide 19

1. Description

Trackby.me is a comprehensive web-based application for tracking TV shows and

movies. The system is designed to show all details of tv shows, movies, cast, medium

and more. As well as monitoring all of these, also it provides much more features like

rating, watching, subscribing, commenting on movies and tv shows. Additionally, it

supports several social media capabilities for users like becoming friends with other

users and evaluating their activities by commenting, putting reaction on them.

In general, two types of users are included. One of them is the admin who may modify

almost all parts of system other than user private credentials. Admin may add, delete,

update tv shows, movies, cast and medium. Nevertheless, non-admin users cannot

make any of these actions. They may request a friendship, mark movies, episodes,

seasons or tv shows as watched, rate them, and put comment on their pages.

Remember that users must register to the system to be able to make all of these

actions. After creating their profiles, they may update their profiles in any time.

Also all the actions of users are recorded and other users will be able to see their

activities. Thus, communication between users are enabled through adding comment

on their displayed actions and reacting them by using emojis which are similar to

Facebook emojis.

2

2. Final E/R Diagram

3

2. Relation Schemas

3.1. User

users (​id, ​username, password, email, age, isAdmin)

3.2. Friendship

friendship (​first_user_id FK(users(id)), second_user_id​ ​FK(users(id))​, ​ status, action_user_id)

3.3. TV Show

tvshow (​id,​ info, show_name, image_url, trailer_url, season_count)

3.4. Season

season(​id,​ show_id FK(show_id)), season_no, info, season_year, image_url, trailer_url,

episode_count)

3.5. Episode

episode(​id, ​show_id FK(tvshow(id), season_id FK(season(id)), episode_no, episode_info,

image_url, trailer_url)

3.6. Comment

comment(​id​, parent_id FK(comment(id)), user_id FK(users(id)), body, subcomment_count)

3.7. Watch

watch(​id,​ user_id FK(users(id)))

4

3.8. Show Comment
show_comment(​show_id FK(tvshow(id))​, comment_id FK(comment(id)))

3.9. Season Comment

season_comment(​season_id FK(season(id))​, comment_id FK(comment(id)))

3.10. Episode Comment

episode_comment(​episode_comment FK(season(id))​, comment_id FK(comment(id)))

3.11. Show Watch

show_watch(​show_id FK(tvshow(id))​, watch_id FK(watch(id)))

3.12. Season Watch

season_watch(​season_id FK(season(id))​, watch_id FK(watch(id)))

3.13. Episode Watch

episode_watch(​episode_id FK(episode(id))​, watch_id FK(watch(id)))

3.14. Rate

rate(​id,​ user_id FK(users(id)), rating)

5

3.15. Show Rate

show_rate(​show_id FK(tvshow(id))​, rate_id FK(rate(id)))

3.16. Season Rate

season_rate(​season_id FK(season(id))​, rate_id FK(rate(id)))

3.17. Episode Rate

episode_rate(​episode_id FK(episode(id))​, rate_id FK(rate(id)))

3.18. Subscribe

subscribe(​show_id FK(tvshow(id)), user_id(users(id))​)

3.19. Reaction
reaction(​id​, user_id FK(users(id)), reaction_type)

3.20. Comment Reaction

comment_reaction(​comment_id FK(comment(id)), ​reaction_id FK(reaction(id)))

3.21. Watch Reaction

watch_reaction(​watch_id FK(watch(id))​, reaction_id FK(watch(id)))

3.22. Notification

notification(​id, ​ user_id FK(users(id)), n_status, n_text, link)

6

3.23. Movie

movie(​id​, movie_name, movie_description, genre, imdb_rating, trailer_url, relase_date)

3.23. Similar Movie

similar_movie(​first_movie_id FK(movie(id)), second_movie_id FK(movie(id))​)

3.24. Movie Comment

movie_comment(​movie_id FK(movie(id))​, comment_id FK(comment(id)))

3.25. Movie Rate

movie_rate(​movie_id FK(movie(id))​, rate_id FK(rate(id)))

3.26. Cast

cast(​id​, cast_name, real_name, image_url, cast_info)

3.27. Act

act(​id​, cast_id FK(cast(id)), role)

3.28. Show Act

show_act(​act_id FK(act(id)), show_id FK(movie(id))​)

3.29. Movie Act

movie_act(​act_id FK(act(id)), movie_id FK(movie(id))​)

3.30. Medium

medium(​id​, medium_name, info, image_url)

7

3.31. Scheduled Episode

scheduled_episode(​medium_id FK(medium(id))​, episode_id FK(episode(id)), time)

3.32. Movie Watch
movie_watch(​movie_id FK(movie(id))​, watch_id FK(watch(id)))

3. Implementation details
As we proposed in our initial report and further developed the application and

database design in ​design report, ​ our project consists of three main parts:

● Frontend (Client)

Client side of ​TrackBy​ is built upon ​React.js​ JavaScript library and ​Semantic UI

framework. It uses next generation JavaScript, modern UI development techniques

such as state-based rendering and individual custom components for achieving

reliability, scalability and maintainability.

● Backend (Server)

Server side of our application is built upon ​Node.js ​runtime​ ​and ​ Express.js ​web

framework. All of the server code is written in TypeScript. On the other hand, our

server act as a ​REST API​, interacts with the persistence layer, make ​CRUD ​operations

and returns specific resources as a response for the requests coming from client side of

the application. It executes respective sql statements with the help of ​node-postgres

module.

In application and data security part, we try to implement best practices in TrackBy.

For instance, we encrypt the plain passwords coming from the client-side with bcrypt

algorithm with randomly generated salt and finally store the fuzzy-string password to

our database. If any case of breach occurs in our database, user credentials stay secure.

We also use ​token-based authentication ​(​JWT​) to identify the request senders and

appropriately give access to protected resources.

● Persistence Layer (Database)

We choose to use PostgreSQL as a relational database. Because it has advanced

8

technical features, broader range of data types (CITEXT, CIRCLE, etc.) and finally it is

fully open source software.

● Tools & Misc

We use ​git​ as version control and collaboration tool. We serve our source code in

GitHub as a public repository. Also we use task-management tool such as ​Trello ​ for

better productivity.

● Problems & Challenges

To achieve smooth development experience, we need to define and also tweak
some config files such as tsconfig, tslint, .env, package.json. At first, it was trouble
for us. However, we did solve those problem after doing some research on internet.
Another challenge was to adapt and use the PostgreSQL’s own syntax (generally
same as the MySQL). So again we did read the documentation, took some tutorials
and voila!

4. Advanced DB features

● Constraints
Note:​ CITEXT is case insensitive character string type for postgres.

Friendship:

status CITEXT NOT NULL ​CHECK​ (

 status​ ​IN​ (​'PENDING'​, ​'APPROVED'​, ​'REJECTED'​)

),

CHECK​ (first_user_id < second_user_id)

Notification:

n_status CITEXT NOT NULL ​CHECK​ (

 n_status​ ​IN​ (​'WAITING'​, ​'SEEN'​)

)

Act:

role CITEXT NOT NULL ​CHECK​ (

 role​ ​IN​ (​'ACTOR'​, ​'DIRECTOR'​, ​'WRITER'​)

)

9

Reaction:

reaction_type CITEXT NOT NULL ​CHECK​ (

 reaction_type​ ​IN​ (​'NONE'​, ​'LIKE'​, ​'LOVE'​, ​'WOW'​, ​'HAHA'​,

'SAD'​, ​'ANGRY'​, ​'THANKFUL'​)

)

● Views

CREATE​ ​VIEW ​public_user​ AS

SELECT ​id, username, email​ FROM users WHERE ​isAdmin​ = False

● Connection Pooling
It allows us to reduce database-related overhead when it's the sheer number of
physical connections dragging performance down. We use pooling method in all of
the server connections to our persistence layer, PostgreSQL database.

● Secondary Indexes

CREATE​ ​UNIQUE​ ​INDEX​ age_x ​ON​ ​users​ (age);

CREATE​ ​INDEX​ username_index ​ON​ ​users​ ​USING​ ​hash​ (username,

password​);

username_index allows to perform login operation faster. Since the login query is
based on equality and uses the structure ​WHERE username=$1 AND
password=$2​, hash based indexing is the best choice.

CREATE​ ​INDEX​ showname_index ​ON​ tvshow (show_name)

CREATE​ ​INDEX​ moviename_index ​ON​ movie (movie_name)

CREATE​ ​INDEX​ episode_no_index ​ON​ episode ​USING​ btree (episode_no)

CREATE​ ​INDEX​ season_no_index ​ON​ season ​USING​ btree (season_no)

Note: Some dbs provide default indexing for foreign keys but postgres does not do
this. And also this will help to speed up JOIN conditions.

10

CREATE​ ​INDEX​ show_comment_index ​ON​ show_comment(comment_id)

CREATE​ ​INDEX​ movie_comment_index ​ON​ movie_comment(comment_id)

CREATE​ ​INDEX​ season_comment_index ​ON​ season_comment(comment_id)

CREATE​ ​INDEX​ episode_comment_index ​ON​ episode_comment(comment_id)

CREATE​ ​INDEX​ watch_index ​ON​ show_watch(watch_id)

CREATE​ ​INDEX​ movie_watch_index ​ON​ movie_watch(watch_id)

CREATE​ ​INDEX​ season_watch_index ​ON​ season_watch(watch_id)

CREATE​ ​INDEX​ episode_watch_index ​ON​ episode_watch(watch_id)

CREATE​ ​INDEX​ movie_rate_index ​ON​ movie_rate(rate_id)

CREATE​ ​INDEX​ show_rate_index ​ON​ show_rate(rate_id)

CREATE​ ​INDEX​ season_rate_index ​ON​ season_rate(rate_id)

CREATE​ ​INDEX​ episode_rate_index ​ON​ episode_rate(rate_id)

CREATE​ ​INDEX​ comment_reaction_index ​ON

comment_reaction(reaction_id)

CREATE​ ​INDEX​ watch_reaction_index ​ON​ watch_reaction(reaction_id)

● Triggers and Stored Procedures

-- SEASON COUNT UPDATE

CREATE​ ​OR​ ​REPLACE​ ​FUNCTION​ increase_season_count()

 ​RETURNS​ ​trigger​ ​AS

$$

BEGIN

 ​UPDATE​ tvshow ​SET​ season_count = season_count + ​1

 WHERE​ tvshow.id = NEW.show_id;

 RETURN NEW;

END​;

$$

LANGUAGE 'plpgsql';

CREATE​ ​OR​ ​REPLACE​ ​FUNCTION​ decrease_season_count()

 ​RETURNS​ ​trigger​ ​AS

$$

BEGIN

 ​UPDATE​ tvshow ​SET​ season_count = season_count - ​1

 WHERE​ tvshow.id = OLD.show_id;

 RETURN NEW;

END​;

$$

LANGUAGE 'plpgsql';

CREATE​ ​TRIGGER​ inc_season_count_trigger

 ​AFTER​ ​INSERT

11

 ​ON​ season

 ​FOR​ ​EACH​ ​ROW

 ​EXECUTE​ ​PROCEDURE​ increase_season_count();

CREATE​ ​TRIGGER​ dec_season_count_trigger

 ​AFTER​ ​DELETE

 ​ON​ season

 ​FOR​ ​EACH​ ​ROW

 ​EXECUTE​ ​PROCEDURE​ decrease_season_count();

-- EPISODE COUNT UPDATE

CREATE​ ​OR​ ​REPLACE​ ​FUNCTION​ increase_episode_count()

 ​RETURNS​ ​trigger​ ​AS

$$

BEGIN

 ​UPDATE​ season ​SET​ episode_count = episode_count + ​1

 WHERE​ season.id = NEW.season_id;

 RETURN NEW;

END​;

$$

LANGUAGE 'plpgsql';

CREATE​ ​OR​ ​REPLACE​ ​FUNCTION​ decrease_episode_count()

 ​RETURNS​ ​trigger​ ​AS

$$

BEGIN

 ​UPDATE​ season ​SET​ episode_count = episode_count - ​1

 WHERE​ season.id = OLD.season_id

 ​RETURN​ ​NEW​;

END​;

$$

LANGUAGE 'plpgsql';

CREATE​ ​TRIGGER​ inc_episode_count_trigger

 ​AFTER​ ​INSERT

 ​ON​ episode

 ​FOR​ ​EACH​ ​ROW

 ​EXECUTE​ ​PROCEDURE​ increase_episode_count();

CREATE​ ​TRIGGER​ dec_episode_count_trigger

 ​AFTER​ ​DELETE

 ​ON​ episode

 ​FOR​ ​EACH​ ​ROW

12

 ​EXECUTE​ ​PROCEDURE​ decrease_episode_count();

-- SUBCOMMENT COUNT UPDATE

CREATE​ ​OR​ ​REPLACE​ ​FUNCTION​ increase_subcomment_count()

 ​RETURNS​ ​trigger​ ​AS

$$

BEGIN

 ​UPDATE​ ​comment​ ​SET​ subcomment_count = subcomment_count + ​1

 WHERE​ comment.id = NEW.parent_id;

 RETURN NEW;

END​;

$$

LANGUAGE 'plpgsql';

CREATE​ ​OR​ ​REPLACE​ ​FUNCTION​ decrease_comment_count()

 ​RETURNS​ ​trigger​ ​AS

$$

BEGIN

 ​UPDATE​ ​comment​ ​SET​ subcomment_count = subcomment_count - ​1

 WHERE​ comement.id = OLD.parent_id

 ​RETURN​ ​NEW​;

END​;

$$

LANGUAGE 'plpgsql';

CREATE​ ​TRIGGER​ inc_subcomment_count_trigger

 ​AFTER​ ​INSERT

 ​ON​ ​comment

 ​FOR​ ​EACH​ ​ROW

 ​EXECUTE​ ​PROCEDURE​ increase_subcomment_count();

CREATE​ ​TRIGGER​ dec_subcomment_count_trigger

 ​AFTER​ ​DELETE

 ​ON​ ​comment

 ​FOR​ ​EACH​ ​ROW

 ​EXECUTE​ ​PROCEDURE​ decrease_subcomment_count();

● Reports
Rating of shows with highest number of rates

Query:

SELECT​ show_name, show_id, ​AVG​(rating) ​as​ average_rating ​FROM​ rate

13

INNER​ ​JOIN​ show_rate ​ON​ show_rate.rate_id = rate.id

INNER​ ​JOIN​ tvshow ​ON​ tvshow.id = show_rate.show_id

WHERE​ show_rate.show_id

IN​ (

SELECT​ show_id ​FROM​ show_rate

GROUP​ ​BY​ show_id

ORDER​ ​BY​ ​COUNT​(*) ​DESC​ ​LIMIT​ ​3

)

GROUP​ ​BY​ show_id

Sample Result:

show_name show_id average_rating

Mr. Robot 5 9.5

Vikings 3 9.0

Gossip Girl 2 4.6

Rating Statistics of Users Who Rated Highest Number of Rates

Query:

SELECT

username,

AVG​(rating) ​as​ average_rating,

stddev​(rating) ​as​ rating_deviation,

COUNT​(*) ​as​ rate_count

FROM​ ​users

INNER​ ​JOIN​ rate ​ON​ rate.user_id = users.id

GROUP​ ​BY​ users.id

ORDER_BY rate_count ​DESC

LIMIT​ ​4

Sample Result:

username average_rating rating_deviation rate_count

fatih 8.1 2.3 40

14

gokcan 7.2 3.6 37

onur 8.5 0.4 28

orcun 4.6 3.8 19

5. User's Manual

Figure 1 - Register Screen

As it is shown in Figure 1, a user can create an account in the system by filling all
the fields in register screen and clicking Register button. If an error occurs while
creating the account, it will be displayed to user. If there is no error, then user will be
authenticated and redirected to homepage.

15

Figure 2- Login Screen

Figure 2 shows the login screen of the application. User can login to the system by
filling those fields and login. If an error occurs during the login process it will be
displayed to user and if there is no error then user will be authenticated and
redirected to homepage of users’ type e.g. Admin homepage if user is admin and
regular homepage otherwise.

16

5.1. Regular User Guide

Figure 3 - Example TV Show Page

Figure 3 shows an example TV Show page. Although Episode page, Season
page, Movie page shows different content, structure of their user interface is
similar. Therefore TV Show page is used as a sample to describe the actions
that a user can do on those pages.

At top side of the page there are watch and rate buttons. User can click

17

mark as watched button to mark this tv show as watched and rate button to
rate this tv show. At the bottom comments to the show is displayed. User can
create a new comment by using the text input above listed comments. User
can also reply to other comments by clicking the reply button on comment and
filling the text input that appears. Icons next to the reply button are reaction
buttons, using those buttons user can add a reaction to a comment and
remove it by clicking the button again.

Figure 4 - Friends page

Figure 4 show the friend page. User can manage their friends from this

page. Using the pending friend requests section user can approve or deny a
friend request. Also user can remove anyone from friend list by using the
Remove from friends list button.

18

Figure 5 - Homepage

Figure 5 shows the homepage. On bottom part of the page users can see activities
of their friends and can comment on or send reaction to them. User can search for tv
shows, episodes, movies and users by using the search field at navigation bar.

5.2. Admin Guide

19

Figure 6 - Admin homepage

Besides the functionalities for regular users, admins can perform extra
operations on the system. Figure 6 shows the admin homepage. By using these
admin can create a new entity. Clicking one of these buttons shows a modal with
necessary input fields for entering the details of the entity.

20

Figure 7 - Admin Tv Show Page

Figure 7 shows how tv show page is displayed to an admin user. In terms of user
interface structure is similar to movie, season, episode pages. Thus Tv show
page is used as a sample for describing the admin operations on these pages.
There are several pencil icons on header part. Clicking these pencil icons make
the text next to them editable and by editing these texts admin can modify the
attributes of show. The plus icons in seasons section and in cast section allows
admin to add season and new artist to show. Clicking these buttons will also
display a modal similar to the ones on homepage. Red cross icons on seasons
and artists allows admin to remove them. Also by clicking the delete show button
at the header part , admin can delete the show.

21

