

 Bilkent University

CS 353 - Database Systems Project
“Track by Me”

Project Design Report

Project Group Number: 18

Project Group Members:
Gökcan Değirmenci, Onur Sönmez, Fatih Taş, Orçun Yalçın

Supervisor & Course Instructor: Asst. Prof. Dr. Hamdi Dibeklioğlu

Submitted at November 20, 2017

Contents

1.Revised E/R Model 3

2. Relation Schemas 5

2.1. Show 5

2.2. Season 6

2.3. Episode 7

2.4. Movie 8

2.5. Similar_Movie 8

2.6. Act 9

2.7. Cast 10

2.8. Scheduled_Episode 10

2.9. Medium 11

2.10. Comment 12

2.11. Show_Comment 12

2.12. Episode_Comment 13

2.13. Season_Comment 14

2.14. Movie_Comment 14

2.15. Reaction 15

2.16. Comment_Reaction 16

2.17. Watch_Reaction 16

2.18. Watch 17

2.19. Season_Watch 17

2.20. Episode_Watch 18

2.21. Movie_Watch 19

2.22. Show_Watch 19

2.23. Rate 20

2.24. Show_Rate 20

2.25. Movie_Rate 21

2.26. Season_Rate 22

2.27. Episode_Rate 22

2.28. User 23

2.29. Friendship 24

2.30. Subscribe 24

2.31. Notification 25

3. Functional Dependencies and Normalization of Tables 26

4. Functional Components 27

4.1 Use Cases / Scenarios 27

4.2 Algorithms 29

4.3 Data Structures (Data Types) 29

5. User Interface Design and Corresponding SQL Statements 30

5.1 Login 30

5.2 Register 31

1

5.3 Episode 32

5.4 Season 35

5.5 Show 38

5.5 Movie 42

5.6 User Profile 44

5.7 Friends 45

5.8 Homepage 47

5.9 Medium 51

5.10 Calendar View 52

5.11 Admin Dashboard 54

5.11.1. Create New TV Show 55

5.11.2. Create New Movie 56

5.11.3. Create New Medium 57

5.11.4. Create New Cast 58

5.14. Modify/Delete TV Show 59

5.15. Add/Delete Scheduled Episode 60

5.16. Modify/Delete Movie 61

5.17. Modify/Delete Cast 62

5.18. Modify/Delete Medium 62

6. Advanced Database Components 63

6.1 Views 63

6.2 Stored Procedures 63

6.3 Reports 63

6.4 Triggers 64

6.5. Constraints 64

7. Implementation Plan 65

2

1.Revised E/R Model

According to assistant’s review, we revised our E/R model by following guidelines given to
us:

● In first phase, we used lots of weak entity model. After review, we used total
participation instead of weak entity.

● We removed interfaces from E/R diagram and connected all entities with separate
relation to each other as suggested.

● We added notification model to E/R diagram since we need to notify users when any
activity or event related to user activities arise.

● We included some redundant foreign keys in entity models by underlining them as
dashed. In this version, we updated this too and removed unnecessary attributes.

● We altered Artist table to Cast table since more generic one is required to support all
cast including scenarists, artists, directors, etc.

● We put separate relation for similar movies instead of including it in table definition of
movie as string array.

● Also episode has relation with the show as well as season after update. We need to
know which tv show owns the episode. That is why, we added this relation to E/R
diagram.

3

4

2. Relation Schemas

● Note that we used UPPER CASE characters for foreign keys since docs does not
enable to put dashed ones.

2.1. Show

Relational Model:

Show(show_id, ACT_ID, show_name, show_info, start_year,

image_urls, trailer_url, created_at, updated_at)

Functional Dependencies:

show_id -> act_id, show_name, show_info, start_year, image_urls,
trailer_url, created_at, updated_at

Candidate Keys:
{{show_id}}

Normal Form:
BCNF

Table Definition:

CREATE TABLE show(

show_id INTEGER NOT NULL AUTO_INCREMENT,
show_name VARCHAR(45) NOT NULL,
show_info VARCHAR(255),
start_year INTEGER,
image_urls TEXT,
trailer_url VARCHAR(75),
created_at TIMESTAMP,
updated_at TIMESTAMP,
FOREIGN KEY(act_id) references ACT(act_id) ON DELETE CASCADE,
PRIMARY KEY(show_id)

);

5

2.2. Season
Relational Model:
Season(season_id, SHOW_ID, ACT_ID, episode_name, season_no, season_info,

season_year, image_urls, trailer_url)

Functional Dependencies:

season_id -> show_id act_id episode_name season_no season_info,
season_year, image_urls, trailer_url

Candidate Keys:

Normal Form: BCNF

Table Definition:

CREATE TABLE season(

season_id INTEGER NOT NULL AUTO_INCREMENT,
episode_name VARCHAR(45) NOT NULL,
season_no INTEGER NOT NULL,
season_info VARCHAR(255),
season_year INTEGER,
image_urls TEXT,
trailer_url VARCHAR(75),
act_id INTEGER,
show_id INTEGER,
FOREIGN KEY(show_id) references SHOW(show_id) ON DELETE
CASCADE,
FOREIGN KEY(act_id) references ACT(act_id),
PRIMARY KEY(season_id)

);

6

2.3. Episode
Relational Model:

Episode(episode_id, SHOW_ID, SEASON_ID, ACT_ID,
episode_no, episode_name, image_urls, episode_info, trailer_url)

Functional Dependencies:

episode_id -> episode_no, episode_name, image_urls, episode_info,
trailer_url

Candidate Keys:

{{episode_id}}

Normal Form:
BCNF

Table Definition:
CREATE TABLE episode(

episode_id INTEGER NOT NULL AUTO_INCREMENT,
episode_no INTEGER NOT NULL,
episode_name VARCHAR(45) NOT NULL,
image_urls TEXT,
episode_info VARCHAR(255),
trailer_url VARCHAR(75),
season_id INTEGER,
show_id INTEGER,
FOREIGN KEY(season_id) references SEASON(season_id) ON DELETE
CASCADE,
FOREIGN KEY(show_id) references SHOW(show_id) ON DELETE
CASCADE,
FOREIGN KEY(act_id) reference ACT(act_id) ON DELETE CASCADE,
PRIMARY KEY(episode_id)

);

7

2.4. Movie

Relational Model:

Movie(movie_id, movie_name, movie_description,
 genre, imdb_rating, trailer_url, relase_date, updated_at, created_at)

Functional Dependencies:

movie_id -> movie_name, movie_description, genre, imdb_rating, image_urls,
release_date, trailer_url, updated_at, created_at

Candidate Keys:

{{movie_id}}

Normal Form:
BCNF

Table Definition:
CREATE TABLE movie(

movie_id INTEGER NOT NULL AUTO_INCREMENT,
movie_name VARCHAR(45) NOT NULL,
image_urls TEXT,
movie_description VARCHAR(255),
trailer_url VARCHAR(75),
PRIMARY KEY(movie_id)

);

2.5. Similar_Movie
Relational Model:

Similar_Movie(first_movie_id, second_movie_id)

Functional Dependencies:

No dependency

Candidate Keys:

{{first_movie_id, second_movie_id}}

8

Normal Form:
BCNF

Table Definition:
CREATE TABLE similar_movie(

first_movie_id INTEGER NOT NULL,
second_movie_id INTEGER NOT NULL,
FOREIGN KEY(first_movie_id) references MOVIE(move_id)
ON DELETE CASCADE,
FOREIGN KEY(second_movie_id) references RATE(movie_id)
ON DELETE CASCADE,
PRIMARY KEY(first_movie_id, second_movie_id)

);

2.6. Act

Relational Model:

Act(act_id, PERSONNEL_ID, act_role)

Functional Dependencies:

act_id -> personnel_id, act_role

Candidate Keys:

{{act_id}}

Normal Form:
BCNF

Table Definition:
CREATE TABLE act(

act_id INTEGER NOT NULL AUTO_INCREMENT,
act_role VARCHAR(45) CHECK
(act_role IN (‘Artist’, ‘Director’, ‘Scenarist’, ‘Other’)),
cast_id INTEGER NOT NULL,
FOREIGN KEY(cast_id) references CAST(cast_id)
ON DELETE CASCADE,
PRIMARY KEY(act_id)

);

9

2.7. Cast

Relational Model:

Cast(cast_id, cast_name, cast_image, cast_info, cast_birthday, created_at,
updated_at)

Functional Dependencies:

cast_id -> cast_name, cast_info, cast_image, cast_birthday, created_at,
updated_at

Candidate Keys:

{{cast_id}}

Normal Form:
BCNF

Table Definition:
CREATE TABLE cast(

cast_id INTEGER NOT NULL AUTO_INCREMENT,
cast_name VARCHAR(45) NOT NULL,
cast_image_url VARCHAR(45),
cast_info VARCHAR(255),
cast_birthday TIMESTAMP,
created_at TIMESTAMP,
updated_at TIMESTAMP,
PRIMARY KEY(personnel_id)

);

10

2.8. Scheduled_Episode

Relational Model:

Scheduled_Episode(EPISODE_ID, MEDIUM_ID, time)

Functional Dependencies:

episode_id, medium_id -> time

Candidate Keys:

{{episode_id, medium_id}}

Normal Form:
BCNF

Table Definition:
CREATE TABLE scheduled_episode(

time TIMESTAMP,
episode_id INTEGER NOT NULL,
medium_id INTEGER NOT NULL,
FOREIGN KEY(episode_id) references EPISODE(episode_id),
FOREIGN KEY(medium_id) references MEDIUM(medium_id)

);

11

2.9. Medium

Relational Model:

Medium(medium_id, medium_name, medium_info, image_urls)

Functional Dependencies:

episode_id -> episode_no, episode_name, image_urls, episode_info,
trailer_url

Candidate Keys:

{{medium_id}}

Normal Form:
BCNF

Table Definition:
CREATE TABLE medium(

medium_id INTEGER NOT NULL AUTO_INCREMENT,
medium_name VARCHAR(45) NOT NULL,
medium_info VARCHAR(255),
image_urls TEXT,
PRIMARY KEY(medium_id)

);

2.10. Comment

Relational Model:

Comment(comment_id, PARENT_ID, USER_ID, body, created_at)

Functional Dependencies:

comment_id -> parent_id, user_id, body, created_at

Candidate Keys:

{{comment_id}}

Normal Form:
BCNF

12

Table Definition:
CREATE TABLE comment(

comment_id INTEGER NOT NULL AUTO_INCREMENT,
body VARCHAR(255) NOT NULL,
created_at TIMESTAMP,
user_id INTEGER NOT NULL,
parent_id INTEGER,
FOREIGN KEY (parent_id) references COMMENT(comment_id),
FOREIGN KEY (user_id) references USER(user_id),
PRIMARY KEY(comment_id)

);

2.11. Show_Comment
Relational Model:

Show_Comment(show_id, comment_id)

Functional Dependencies:

No dependency

Candidate Keys:

{{show_id, comment_id}}

Normal Form:
BCNF

Table Definition:
CREATE TABLE show_comment(

show_id INTEGER NOT NULL,
comment_id INTEGER NOT NULL,
FOREIGN KEY(show_id) references SHOW,
FOREIGN KEY(comment_id) references COMMENT,
PRIMARY KEY(comment_id, show_id)

);

13

2.12. Episode_Comment

Relational Model:

Episode_Comment(episode_id, comment_id)

Functional Dependencies:

No dependency

Candidate Keys:

{{episode_id, comment_id}}

Normal Form:
BCNF

Table Definition:
CREATE TABLE episode_comment(

episode_id INTEGER NOT NULL,
comment_id INTEGER NOT NULL,
FOREIGN KEY(episode_id) references EPISODE
ON DELETE CASCADE,
FOREIGN KEY(comment_id) references COMMENT
ON DELETE CASCADE,
PRIMARY KEY(comment_id, episode_id)

);

14

2.13. Season_Comment

Relational Model:

Season_Comment(season_id, comment_id)

Functional Dependencies:

No dependency

Candidate Keys:

{{season_id, comment_id}}

Normal Form:
BCNF

Table Definition:
CREATE TABLE season_comment(

season_id INTEGER NOT NULL,
comment_id INTEGER NOT NULL,
FOREIGN KEY(season_id) references SEASON
ON DELETE CASCADE,
FOREIGN KEY(comment_id) references COMMENT
ON DELETE CASCADE,
PRIMARY KEY(comment_id, season_id)

);

15

2.14. Movie_Comment

Relational Model:

Movie_Comment(movie_id, comment_id)

Functional Dependencies:
No dependency

Candidate Keys:

{{movie_id, comment_id}}

Normal Form:
BCNF

Table Definition:
CREATE TABLE movie_comment(

movie_id INTEGER NOT NULL,
comment_id INTEGER NOT NULL,
FOREIGN KEY(movie_id) references MOVIE
ON DELETE CASCADE,
FOREIGN KEY(comment_id) references COMMENT
ON DELETE CASCADE,
PRIMARY KEY(comment_id, movie_id)

);

2.15. Reaction

Relational Model:

Reaction(reaction_id, reaction_type, created_at)

Functional Dependencies:

reaction_id -> reaction_type, created_at

Candidate Keys:

{{reaction_id}}

Normal Form:
BCNF

16

Table Definition:
CREATE TABLE reaction(

reaction_id INTEGER NOT NULL AUTO_INCREMENT,
reaction_type VARCHAR(20) NOT NULL,
user_id INTEGER NOT NULL,
created_at TIMESTAMP,
FOREIGN KEY(user_id) references USER ON DELETE CASCADE,
PRIMARY KEY(reaction_id)

);

2.16. Comment_Reaction

Relational Model:

Comment_Reaction(comment_id, reaction_id)

Functional Dependencies:
No dependency

Candidate Keys:

{{comment_id, reaction_id}}

Normal Form:
BCNF

Table Definition:
CREATE TABLE comment_reaction(

comment_id INTEGER NOT NULL,
reaction_id INTEGER NOT NULL,
FOREIGN KEY(comment_id) references COMMENT
ON DELETE CASCADE,
FOREIGN KEY(reaction_id) references REACTION
ON DELETE CASCADE,
PRIMARY KEY(comment_id, reaction_id)

);

17

2.17. Watch_Reaction

Relational Model:

Watch_Reaction(watch_id, reaction_id)

Functional Dependencies:
No dependency

Candidate Keys:

{{watch_id, reaction_id}}

Normal Form:
BCNF

Table Definition:
CREATE TABLE watch_reaction(

watch_id INTEGER NOT NULL,
reaction_id INTEGER NOT NULL,
FOREIGN KEY(watch_id) references WATCH
ON DELETE CASCADE,
FOREIGN KEY(reaction_id) references REACTION
ON DELETE CASCADE,
PRIMARY KEY(watch_id, reaction_id)

);

2.18. Watch
Relational Model:

Watch(watch_id, USER_ID, created_at)

Functional Dependencies:
No dependency

Candidate Keys:

{{watch_id}}

Normal Form:
BCNF

18

Table Definition:
CREATE TABLE watch(

watch_id INTEGER NOT NULL AUTO_INCREMENT,
user_id INTEGER NOT NULL,
FOREIGN KEY(user_id) references USER
ON DELETE CASCADE,
PRIMARY KEY(watch_id)

);

2.19. Season_Watch

Relational Model:

Season_Watch(watch_id, season_id)

Functional Dependencies:
No dependency

Candidate Keys:

{{watch_id, season_id}}

Normal Form:
BCNF

Table Definition:
CREATE TABLE season_watch(

watch_id INTEGER NOT NULL,
season_id INTEGER NOT NULL,
FOREIGN KEY(watch_id) references WATCH
ON DELETE CASCADE,
FOREIGN KEY(season_id) references SEASON
ON DELETE CASCADE,
PRIMARY KEY(watch_id, season_id)

);

2.20. Episode_Watch
Relational Model:

Episode_Watch(watch_id, episode_id)

Functional Dependencies:
No dependency

Candidate Keys:

19

{{watch_id, episode_id}}

Normal Form:
BCNF

Table Definition:
CREATE TABLE episode_watch(

watch_id INTEGER NOT NULL,
episode_id INTEGER NOT NULL,
FOREIGN KEY(watch_id) references WATCH
ON DELETE CASCADE,
FOREIGN KEY(episode_id) references EPISODE
ON DELETE CASCADE,
PRIMARY KEY(watch_id, episode_id)

);

2.21. Movie_Watch

Relational Model:

Movie_Watch(watch_id, movie_id)

Functional Dependencies:
No dependency

Candidate Keys:

{{watch_id, movie_id}}

Normal Form:
BCNF

Table Definition:
CREATE TABLE movie_watch(

watch_id INTEGER NOT NULL,
movie_id INTEGER NOT NULL,
FOREIGN KEY(watch_id) references WATCH
ON DELETE CASCADE,
FOREIGN KEY(movie_id) references MOVIE
ON DELETE CASCADE,
PRIMARY KEY(watch_id, movie_id)

);

20

2.22. Show_Watch

Relational Model:

Show_Watch(show_id, watch_id)

Functional Dependencies:
No dependency

Candidate Keys:

{{show_id, watch_id}}

Normal Form:
BCNF

Table Definition:
CREATE TABLE show_watch(

watch_id INTEGER NOT NULL,
show_id INTEGER NOT NULL,
FOREIGN KEY(watch_id) references WATCH
ON DELETE CASCADE,
FOREIGN KEY(show_id) references SHOW
ON DELETE CASCADE,
PRIMARY KEY(watch_id, show_id)

);

2.23. Rate

Relational Model:

Rate(rate_id, rating, created_at)

Functional Dependencies:
rate_id -> rating, created_at

Candidate Keys:

{{rate_id}}

Normal Form:
BCNF

Table Definition:
CREATE TABLE rate(

21

rate_id INTEGER NOT NULL AUTO_INCREMENT,
user_id INTEGER NOT NULL,
rating DOUBLE,
created_at TIMESTAMP
FOREIGN KEY(user_id) references USER(user_id)
ON DELETE CASCADE,
PRIMARY KEY(rate_id)

);

2.24. Show_Rate

Relational Model:

Show_Rate(rate_id, show_id)

Functional Dependencies:
No dependency

Candidate Keys:

{{rate_id, show_id}}

Normal Form:
BCNF

Table Definition:
CREATE TABLE show_rate(

show_id INTEGER NOT NULL,
rate_id INTEGER NOT NULL,
FOREIGN KEY(show_id) references SHOW(show_id)
ON DELETE CASCADE,
FOREIGN KEY(rate_id) references RATE(rate_id)
ON DELETE CASCADE,
PRIMARY KEY(rate_id, show_id)

);

2.25. Movie_Rate

Relational Model:

Movie_Rate(rate_id, movie_id)

Functional Dependencies:
No dependency

Candidate Keys:

22

{{rate_id, movie_id}}

Normal Form:
BCNF

Table Definition:
CREATE TABLE movie_rate(

rate_id INTEGER NOT NULL,
movie_id INTEGER NOT NULL,
FOREIGN KEY(rate_id) references RATE(rate_id),
FOREIGN KEY(movie_id) references MOVIE(movie_id)
ON DELETE CASCADE,
PRIMARY KEY(rate_id, movie_id)

);

2.26. Season_Rate

Relational Model:

Season_Rate(rate_id, season_id)

Functional Dependencies:
No dependency

Candidate Keys:

{{rate_id, season_id}}

Normal Form:
BCNF

Table Definition:
CREATE TABLE season_rate(

season_id INTEGER NOT NULL,
rate_id INTEGER NOT NULL,
FOREIGN KEY(season_id) references USER(season_id)
ON DELETE CASCADE,
FOREIGN KEY(rate_id) references RATE(rate_id),
PRIMARY KEY(rate_id, season_id)

);

2.27. Episode_Rate
Relational Model:

23

Episode_Rate(rate_id, episode_id)

Functional Dependencies:
No dependency

Candidate Keys:

{{rate_id, episode_id}}

Normal Form:
BCNF

Table Definition:
CREATE TABLE episode_rate(

episode_id INTEGER NOT NULL,
rate_id INTEGER NOT NULL,
FOREIGN KEY(episode_id) references USER(episode_id)
ON DELETE CASCADE,
FOREIGN KEY(rate_id) references RATE(rate_id),
PRIMARY KEY(rate_id, episode_id)

);

2.28. User

Relational Model:

User(user_id, user_name, user_type, user_email,
user_password, user_firstname, user_lastname, age,
image_url, created_at, updated_at)

Functional Dependencies:

user_id -> user_name, user_type, user_email, user_password,
user_firstname, user_lastname, age, image_url, created_at, updated_at

Candidate Keys:

{{user_id}}

Normal Form:
BCNF

Table Definition:
CREATE TABLE user(

24

user_id INTEGER NOT NULL AUTO_INCREMENT,
user_name VARCHAR(25) NOT NULL UNIQUE,
user_email VARCHAR(25) NOT NULL UNIQUE,
user_password VARCHAR(32) NOT NULL UNIQUE,
user_type VARCHAR(25) NOT NULL CHECK
(user_type IN (‘Admin’, ‘Normal’)),
user_firstname VARCHAR(25),
user_lastname VARCHAR(25) ,
age INTEGER,
image_url VARCHAR(55),
created_at TIMESTAMP,
updated_at TIMESTAMP,
PRIMARY KEY(user_id)

);

2.29. Friendship

Relational Model:

Friendship(first_user_id, second_user_id, friendship_status)

Functional Dependencies:
No dependency

Candidate Keys:

{{first_user_id, second_user_id}}

Normal Form:
BCNF

Table Definition:
CREATE TABLE friendship(

first_user_id INTEGER NOT NULL,
second_user_id INTEGER NOT NULL,
friendship_status STRING NOT NULL CHECK
(friendship_status IN(‘PENDING, ‘APPROVED’, ‘REJECTED’)),
FOREIGN KEY(first_user_id) references USER(user_id)
ON DELETE CASCADE,
FOREIGN KEY(second_user_id) references USER(user_id)
ON DELETE CASCADE,
PRIMARY KEY(first_user_id, second_user_id)

);

25

2.30. Subscribe
Relational Model:

Subscribe(show_id, user_id)

Functional Dependencies:
No dependency

Candidate Keys:

{{show_id, user_id}}

Normal Form:
BCNF

Table Definition:
CREATE TABLE subscribe(

show_id INTEGER NOT NULL,
user_id INTEGER NOT NULL,
friendship_status INTEGER NOT NULL,
FOREIGN KEY(show_id) references SHOW(show_id)
ON DELETE CASCADE,
FOREIGN KEY(user_id) references USER(user_id)
ON DELETE CASCADE,
PRIMARY KEY(user_id, show_id)

);

2.31. Notification
Relational Model:

Notification(notification_id, USER_ID, status, created_at, seen_at, text, link)

Functional Dependencies:

Candidate Keys:

{{notification_id}}

Normal Form:
BCNF

26

Table Definition:
CREATE TABLE notification(

notification_id INTEGER NOT NULL AUTO_INCREMENT,
user_id INTEGER NOT NULL,
status INTEGER,
created_at TIMESTAMP,
seen_at TIMESTAMP,
text VARCHAR(255),
link VARCHAR(60),
FOREIGN KEY(user_id) references USER(user_id)
ON DELETE CASCADE,
PRIMARY KEY(notification_id)

);

3. Functional Dependencies and Normalization of
Tables

Functional dependencies and normal forms are defined in Relation Schemas part of this
report. All relations are checked whether they are in Boyce-Codd normal form. It is
concluded that decomposition is not necessary.

27

4. Functional Components

4.1 Use Cases / Scenarios

Guest:
● Guest can list TV series and movies with (basic) filters such as genre,TrackBy rating,

popularity, etc.

● Guest can review cast, images and trailers of tv series and movies through their

showcase pages.

● Guest can make search specific TV Series and movies.

● Guest can see upcoming episodes of TV Series and movies through the Calendar.

User:

● User can login to system with email and password.

● User can mark episodes as watched

● User can subscribe to specific TV Series

● User can get notified when the new episode of subscribed tv series arrives.

● User can make search specific TV Series and movies.

● User can comment on TV series, specific episodes & seasons and movies.

● User can comment on other users’ actions(their comments etc.)

● User can rate TV series, specific episodes & seasons and movies.

● User can drop reaction emoji to other users’ actions.

● User can send friendship requests to other users.

● User can accept or ignore friendship requests.

● User can list TV series and movies with advanced filters such as IMDB rating, length,

language, origin country of the movie.

● User can review cast, images and trailers of tv series and movies through their

showcase pages.

● User can check out the upcoming tv series’ episodes by take a look at “Calendar”.

● User can avoid spoilers by configuring the personal settings.

● User can get email notifications for their actions and subscriptions.

● User can start discussion about TV series and movies.

Admin:
● Admin can login to system with email and password.

● Admin can ban users from the platform.

28

● Admin can warn users because of their flagged actions.

● Admin can delete comments.

● Admin can modify comments according to community rules.

● Admin can tag TV series, movies as Editor’s Choice.

● Admin can add specific movies, TV series.

● Admin can modify the information related to movies and TV series.

● Admin can delete the occurrence of specific movies and TV series.

● Admin can give and take some of the administrative rights to other users.

29

4.2 Algorithms

How do we calculate 10-star rating? We could just take the
weighted average… but it is boring…

Constraints:

- Have user actually marked that movie as watched before rate it?
- How many “bad” and “good” reactions he got on his rate action?
- Are other users actually disliking or liking his rate to movie? (Do they find it helpful or

not)
- How old is the account? (since its creation date)
- How active is the user? (check the total comments, watched movies, etc)
- Is he just spamming with 1-star ratings? Or is he a bot that gives 5-star to literally

everything?
- How many followers (friends) he got? (If he is influential person, we multiply his rating

with some predefined factor)

After correctly calculating and computing the overall rating of the specific movie, episode,
season or TV Series as a whole; we simultaneously change the rating_value of it.

4.3 Data Structures (Data Types)

We will use built-in data types of MySQL such as :

● TEXT
● DATE
● VARCHAR
● INTEGER
● TIMESTAMP
● DOUBLE

30

5. User Interface Design and Corresponding SQL
Statements

5.1 Login

Inputs: @email, @password
Process: User enters her email and password to enter the system.

SQL Statements:
Login
SELECT email, password
FROM users
WHERE email=@email AND password = @password

31

5.2 Register

Inputs: @email, @password, @username, @firstname, @lastname, @birthdate
Process: User specify her email, selected password, selected user name, her first name,
last name and birthdate to register the system. Also, user should accept user agreement in
order to register the system.

SQL Statements:

Check if email and username exists:

SELECT email, username FROM user WHERE email = @email OR
username=@username;

Save User To Database: // hashed password will be put into db
INSERT INTO user (email, username, firstname,lastname, password, birthdate)

VALUES(@email, @username, @firstname, @lastname, @password, @birthdae)

32

5.3 Episode

Inputs: @episode_id @season_id, @user_id, @rating

Process: The episode screen has four main features. Firstly, when the episode screen is
opened, it displays summary of episode with name of the episode. Also, user can see date
of release of the episode. Secondly, user can see whether she watched or liked episode.
User can mark as watched, if she watch this episode. Thirdly, user can remark whether she
liked episode or not by pressing emoji buttons. Fourthly, user can see cast and crew credits
of the episode. Fourthly, user can write and edit comments on episode. Besides, user can
see, reply and like comments by other users. Also, comments can be filtered by count of
reply or like.

33

SQL Statements

Fetch Episode Info:
SELECT * FROM episode WHERE episode_id = @episode_id

Fetch Comments:
SELECT comment.* FROM comment

INNER JOIN episode_comment ON episode_comment.episode_id = @episode_id
INNER JOIN public_user ON comment.user_id = public_user.user_id

Fetch Comment Reactions:
SELECT reaction.*, comment_reaction.comment_id FROM reaction

INNER JOIN comment_reaction
ON comment_reaction.comment_id

IN (SELECT comment_id FROM comment
INNER JOIN episode_comment ON
episode_comment.episode_id = @episode_id

)
GROUP BY comment_reaction.comment_id, reaction.reaction_type

Fetch Comment Replies:
SELECT comment.* FROM comment

INNER JOIN public_user ON comment.user_id = public_user.user_id
WHERE parent_id IN
 (SELECT comment_id FROM comment

INNER JOIN episode_comment ON episode_comment.episode_id =
@episode_id

)
GROUP BY parent_id

Create New Comment:
@uuid = Unique id generated by backend code
INSERT INTO comment(comment_id, body, user_id) VALUES(@uuid, @body, @user_id)
INSERT INTO episode_comment(comment_id, episode_id) VALUES(@uuid, @episode_id);

Fetch Is Watched:
SELECT COUNT(*) FROM watch,

INNER JOIN episode_watch ON
episode_watch.episode_id = @episode_id AND

WHERE
watch.user_id = @user_id

Fetch Is Rated:
SELECT rating FROM rate

INNER JOIN episode_rate ON
episode_rate.episode_id = @episode_id AND
rate.user_id = @user_id

34

Cast:
SELECT cast.* FROM act

INNER JOIN episode_acts ON act.act_id =episode_act.act_id
INNER JOIN cast.cast_id = act.cast_id

Rate Episode (If It isn’t rated before):
@uuid = Unique id generated by backend script

INSERT INTO rating(rating_id, user_id, rating) VALUES (@uuid, @user_id, @rating)
INSERT INTO episode_rating(rating_id, episode_id) VALUES(@uuid,@episode_id);

Rate Episode (If It is already rated):
UPDATE rating SET rating=@rating

WHERE rating_id IN
(SELECT rating_id FROM episode_rate WHERE episode_id = @episode_id)

AND user_id = @user_id

35

5.4 Season

Inputs: @season_id, @show_id, @user_id, @comment_body
Process: The season screen has four main features. Firstly, when the season screen is
opened, it displays all of the episodes in selected season and their details. Also, user can
see whether she watched or liked season. User can mark as watched, if she watch this

36

season. Secondly, user can remark whether she liked season or not by pressing like
buttons. Thirdly, user can see cast and crew credits of the season. Fourthly, user can write
and edit comments on season. Besides, user can see, reply and like comments by other
users. Also, comments can be filtered by count of reply or like.

SQL Statements:

Fetch Season Info:
SELECT * FROM season WHERE season_id = @season_id

Fetch Comments:
SELECT comment.* FROM comment

INNER JOIN season_comment ON season_comment.season_id = @season_id
INNER JOIN public_user ON comment.user_id = public_user.user_id

Fetch Comment Reactions:
SELECT reaction.*, comment_reaction.comment_id FROM reaction

INNER JOIN comment_reaction
ON comment_reaction.comment_id

IN (SELECT comment_id FROM comment
INNER JOIN season_comment ON
season_comment.season_id = @season_id

)
GROUP BY comment_reaction.comment_id, reaction.reaction_type

Fetch Comment Replies:
SELECT comment.* FROM comment

INNER JOIN public_user ON comment.user_id = public_user.user_id
 WHERE parent_id IN
 (SELECT comment_id FROM comment

INNER JOIN season_comment ON season_comment.season_id =
@season_id

)
GROUP BY parent_id

Create New Comment:
@uuid = Unique id generated by backend code
INSERT INTO comment(comment_id, body, user_id) VALUES(@uuid, @body, @user_id)
INSERT INTO season_comment(comment_id, season_id) VALUES(@uuid, @season_id);

Fetch Is Watched:
SELECT COUNT(*) FROM watch,

INNER JOIN season_watch ON
season_watch.season_id = @season_id

WHERE watch.user_id = @user_id

37

Fetch Is Rated:
SELECT rating FROM rate

INNER JOIN season_rate ON
season_rate.season_id = @season_id AND
rate.user_id = @user_id

Cast:
SELECT cast.* FROM act

INNER JOIN season_acts ON act.act_id =season_act.act_id
INNER JOIN cast ON cast.cast_id = act.cast_id

Rate Season(If It isn’t rated before):
@uuid = Unique id generated by backend script

INSERT INTO rating(rating_id, user_id, rating) VALUES (@uuid, @user_id, @rating)
INSERT INTO season_rating(rating_id, season_id) VALUES(@uuid,@season_id);

Rate Season (If It is already rated):
UPDATE rating SET rating=@rating

WHERE rating_id IN
(SELECT rating_id FROM season_rate WHERE season_id = @season_id)

AND user_id = @user_id

Fetch Episodes
SELECT * FROM episode

WHERE season_id = @season_id

Fetch Episodes Is Rated
SELECT rating FROM rate

LEFT JOIN episode_rate ON
episode_rate.episode_id IN

(SELECT * FROM episode WHERE season_id = @season_id) AND
rate.user_id = @user_id

GROUP BY episode_id

Fetch Episodes Is Watched:
SELECT COUNT(*) FROM watch,

INNER JOIN episode_watch ON
episode_rate.episode_id IN

(SELECT * FROM episode WHERE season_id = @season_id)AND
WHERE watch.user_id = @user_id
GROUP BY episode_id

38

5.5 Show

39

Inputs: @show_id, @user_id, @rate, @body

Process: The show screen has three main features. Firstly, when the show screen is
opened, it displays details of the show includes crew credits, number of seasons, subscribe,
user ratings and plot summary. Also, user can see whether she watched or liked show. User
can mark as watched, if she watch this show. Secondly, user can display all of the episodes
of the show with their user ratings. Thirdly,user can write and edit comments on show.
Besides, user can see, reply and like comments by other users. Also, comments can be
filtered by count of reply or like.

SQL Statements:

Fetch Show Info:
SELECT * FROM show WHERE show_id = @show_id

Fetch Comments:
SELECT comment.* FROM comment

INNER JOIN public_user ON comment.user_id = public_user.user_id
INNER JOIN show_comment ON show_comment.show_id = @show_id

Fetch Comment Reactions:
SELECT reaction.*, comment_reaction.comment_id FROM reaction

INNER JOIN comment_reaction
ON comment_reaction.comment_id

IN (SELECT comment_id FROM comment
INNER JOIN show_comment ON

show_comment.show_id = @show_id
)

GROUP BY comment_reaction.comment_id, reaction.reaction_type

Fetch Comment Replies:
SELECT comment.* FROM comment

INNER JOIN public_user ON comment.user_id = public_user.user_id
WHERE parent_id IN
 (SELECT comment_id FROM comment

INNER JOIN show_comment ON show_comment.season_id = @show_id
)
GROUP BY parent_id

Create New Comment:
@uuid = Unique id generated by backend code
INSERT INTO comment(comment_id, body, user_id) VALUES(@uuid, @body, @user_id)
INSERT INTO show_comment(comment_id, show_id) VALUES(@uuid, @show_id);

40

Fetch Is Watched:
SELECT COUNT(*) FROM watch,

INNER JOIN show_watch ON
show_watch.show_id = @show_id

WHERE watch.user_id = @user_id

Fetch Is Rated:
SELECT rating FROM rate

INNER JOIN show_rate ON
show_rate.show_id = @season_id AND
rate.user_id = @user_id

Cast:
SELECT cast.* FROM act

INNER JOIN show_act ON act.act_id = show_act.act_id
INNER JOIN cast ON cast.cast_id = act.cast_id

Rate Show(If It isn’t rated before):
@uuid = Unique id generated by backend script

INSERT INTO rating(rating_id, user_id, rating) VALUES (@uuid, @user_id, @rating)
INSERT INTO show_rating(rating_id, show_id) VALUES(@uuid,@show_id);

Fetch Is Subscribed:
SELECT * FROM subscribe WHERE user_id=@user_id AND show_id = @show_id

Subscribe
INSERT INTO subscribe(user_id, show_id) VALUES(@user_id, @show_id)

Unsubscribe
DELETE FROM subscribe WHERE user_id=@user_id AND show_id = @show_id

Rate Show (If It is already rated):
UPDATE rating SET rating=@rating

WHERE rating_id IN
(SELECT rating_id FROM show_rate WHERE show_id = @show_id) AND

user_id = @user_id

Fetch Seasons
SELECT * FROM season

WHERE show_id = @show_id

Fetch Season Is Rated
SELECT rating FROM rate

LEFT JOIN season_rate ON
season_rate.episode_id IN

41

(SELECT * FROM season WHERE show_id = @show_id) AND
rate.user_id = @user_id

GROUP BY season_id

Fetch Season Is Watched:
SELECT COUNT(*) FROM watch,

INNER JOIN season_watch ON
season_rate.episode_id IN

(SELECT * FROM season WHERE show_id = @show_id) AND
WHERE watch.user_id = @user_id
GROUP BY episode_id

42

5.5 Movie

Inputs: @movie_id, @user_id, @body, @rate
Process:The movie screen has two main features. Firstly, when the movie screen is
opened, it displays details of the movie includes crew credits, user ratings, date of release
and plot summary. Also, user can see whether she watched, or rated movie. User can mark
as watched, if she watch this movie. Secondly,user can write and edit comments on movie.
Besides, user can see, reply and like comments by other users. Also, comments can be
filtered by count of reply or like.

43

SQL Statements:

Fetch Show Info:
SELECT * FROM movie WHERE movie _id = @movie _id

Fetch Comments:
SELECT comment.* FROM comment

INNER JOIN public_user ON comment.user_id = public_user.user_id
INNER JOIN movie _comment ON movie _comment.show_id = @movie _id

Fetch Comment Reactions:
SELECT reaction.*, comment_reaction.comment_id FROM reaction

INNER JOIN comment_reaction
ON comment_reaction.comment_id

IN (SELECT comment_id FROM comment
INNER JOIN movie_comment ON

movie_comment.show_id = @movie_id
)

GROUP BY comment_reaction.comment_id, reaction.reaction_type

Fetch Comment Replies:
SELECT comment.* FROM comment

INNER JOIN public_user ON comment.user_id = public_user.user_id
WHERE parent_id IN
 (SELECT comment_id FROM comment

INNER JOIN movie_comment ON movie_comment.movie_id = @movie_id
)
GROUP BY parent_id

Create New Comment:
@uuid = Unique id generated by backend code
INSERT INTO comment(comment_id, body, user_id) VALUES(@uuid, @body, @user_id)
INSERT INTO movie_comment(comment_id, movie_id) VALUES(@uuid, @movie_id);

Fetch Is Watched:
SELECT COUNT(*) FROM watch,

INNER JOIN movie_watch ON
movie_watch.show_id = @movie_id

WHERE watch.user_id = @user_id

Fetch Is Rated:
SELECT rating FROM rate

INNER JOIN movie_rate ON
movie_rate.movie_id = @movie_id AND
rate.user_id = @user_id

44

Cast:
SELECT cast.* FROM act

INNER JOIN movie_act ON act.act_id = movie_act.act_id
INNER JOIN cast ON cast.cast_id = act.cast_id

Rate Movie(If It isn’t rated before):
@uuid = Unique id generated by backend script

INSERT INTO rating(rating_id, user_id, rating) VALUES (@uuid, @user_id, @rating)
INSERT INTO movie_rating(rating_id, movie_id) VALUES(@uuid,@movie_id);

Rate Movie (If It is already rated):
UPDATE rating SET rating=@rating

WHERE rating_id IN
(SELECT rating_id FROM show_rate WHERE movie_id = @movie_id) AND

user_id = @user_id

5.6 User Profile

Inputs: @user_id

45

Process: When the User Profile screen is opened, previously current photo of user and
informations related to user are displayed. Users can change and edit their informations
includes password and user photo.

SQL Statements:

Fetch User Info:
GET user_email, user_firstname, user_last_name, user_birthday FROM user WHERE
user_id = @user_id;

Update User:

UPDATE user SET user_email = @user_email, user_firstname = @user_firstname,
user_lastname = @user_lastname, user_birthday = @user_birthday, user_password =
@user_password WHERE user_id = @user_id;

5.7 Friends

Inputs: @user_id, @second_user_id
Process: When the Friends screen is opened, user photo, pending friend requests and
current friends are displayed. User can approve or deny these friend requests. Also, user
can remove any friend from Friends List.

46

SQL Statements:
Fetch User photo:

SELECT image_url FROM user WHERE user_id = @user_id;
//then open the path and upload it

Fetching pending friend requests:

SELECT user_name, user_mail FROM user WHERE user_id
IN (SELECT second_user_id FROM friendship
WHERE friendship_status = ‘PENDING’ AND first_user_id = @user_id)

Fetching current friends:

SELECT user_name, user_mail FROM user WHERE user_id
IN (SELECT second_user_id FROM friendship
WHERE friendship_status = ‘APPROVED’ AND first_user_id = @user_id)

Rejecting friendship request:

UPDATE friendship
SET status = ‘REJECTED’
WHERE first_user_id = @user_id AND second_user_id = @second_user_id;

Accepting friendship request:

UPDATE friendship
SET status = ‘APPROVED’
WHERE first_user_id = @user_id AND second_user_id = @second_user_id;

47

5.8 Homepage

Inputs: @user_id, @rate, @reaction_type, @watch_id, @comment_id, @body
Process: When the Homepage screen is opened, previously user can see movie and show
suggestions by the editors as “Choice of the Week”. User can see crew credits, user rate,
date of release of this suggested movie or show. Also, user can see whether she watched or
rated movie or show. Furthermore, homepage screen informed user about upcoming
episodes. Besides,user can write and edit comments on movie, show or episodes. User can
see, reply and like comments by other users. Moreover, user can search movie,show, user
or artist by using search tab.

SQL Statements:
Friends’ Activity Feed:

48

Upcoming Episodes:
SELECT episode.* FROM episode

INNER JOIN scheduled_episode ON
episode.episode_id =scheduled_episode.episode_id

INNER JOIN medium ON medium.medium_id = scheduled_episode.episode_id
WHERE
 DATE(scheduled_episode.time) BETWEEN

 CURDATE() AND CURDATE + interval 1 day
ORDER BY scheduled_episode.time DESC

Notifications:
SELECT * FROM notification WHERE user_id = @user_id AND seen_at IS NULL

Friend Feed:

Latest Comments:
Episode Comments
SELECT comment.*, episode.* FROM comment
 INNER JOIN episode_comment ON

comment.comment_id = episode_comment.comment_id
INNER JOIN episode ON

episode.episode_id = episode_comment.episode_id
INNER JOIN public_user ON comment.user_id = public_user.user_id
WHERE comment.user_id IN (

SELECT second_user_id FROM friendship WHERE
first_user_id = @user_id AND
 friendship_status = ‘APPROVED’

)

Season Comments
SELECT comment.*, episode.* FROM comment
 INNER JOIN season_comment ON

comment.comment_id = season_comment.comment_id
INNER JOIN season ON

season.episode_id =season_comment.episode_id
INNER JOIN public_user ON comment.user_id = public_user.user_id
WHERE comment.user_id IN (

SELECT second_user_id FROM friendship WHERE
first_user_id = @user_id AND
 friendship_status = ‘APPROVED’

)

Show Comments
SELECT comment.*, episode.* FROM comment
 INNER JOIN show_comment ON

comment.comment_id = show_comment.comment_id
INNER JOIN show ON

49

show.show_id =show_comment.show_id
INNER JOIN public_user ON comment.user_id = public_user.user_id
WHERE comment.user_id IN (

SELECT second_user_id FROM friendship WHERE
first_user_id = @user_id AND
 friendship_status = ‘APPROVED’

)

Movie Comments
SELECT comment.*, episode.* FROM comment
 INNER JOIN movie_comment ON

comment.comment_id = movie_comment.comment_id
INNER JOINmovie ON

movie.movie_id =movie_comment.show_id
WHERE comment.user_id IN (

SELECT second_user_id FROM friendship WHERE
first_user_id = @user_id AND
 friendship_status = ‘APPROVED’

)

Latest Watches:

Episode Watches
SELECT watch.*, episode.* FROM watch
 INNER JOIN episode_watch ON

watch.watch_id = episode_watch.watch_id
INNER JOIN episode ON

episode.episode_id = episode_watch.episode_id
INNER JOIN public_user ON watch.user_id = public_user.user_id
WHERE watch.user_id IN (

SELECT second_user_id FROM friendship WHERE
first_user_id = @user_id AND
 friendship_status = ‘APPROVED’

)

Season Watches
SELECT watch.*, episode.* FROM watch
 INNER JOIN season_watch ON

watch.watch_id = season_watch.watch_id
INNER JOIN season ON

season.episode_id =season_watch.episode_id
INNER JOIN public_user ON watch.user_id = public_user.user_id
WHERE watch.user_id IN (

SELECT second_user_id FROM friendship WHERE
first_user_id = @user_id AND
 friendship_status = ‘APPROVED’

)

50

Show Watches
SELECT watch.*, episode.* FROM watch
 INNER JOIN show_watch ON

watch.watch_id = show_watch.watch_id
INNER JOIN show ON

show.show_id =show_watch.show_id
INNER JOIN public_user ON watch.user_id = public_user.user_id
WHERE watch.user_id IN (

SELECT second_user_id FROM friendship WHERE
first_user_id = @user_id AND
 friendship_status = ‘APPROVED’

)

Movie Watches
SELECT watch.*, episode.* FROM comments
 INNER JOIN movie_watch ON

watch.watch_id = movie_watch.watch_id
INNER JOIN movie ON

movie.movie_id =movie_watch.show_id
WHERE watch.user_id IN (

SELECT second_user_id FROM friendship WHERE
first_user_id = @user_id AND
 friendship_status = ‘APPROVED’

)

Create Watch Reaction:
@uuid = Unique id generated by backend script

INSERT INTO reaction(reaction_id, reaction_type, user_id)

VALUES (@uuid, @reaction_type, @user_id)

INSERT INTO watch_reaction(watch_id, reaction_id) VALUES (@watch_id, @uuid)

Create Comment Reaction:
@uuid = Unique id generated by backend script

INSERT INTO reaction(reaction_id, reaction_type, user_id)

VALUES (@uuid, @reaction_type, @user_id)

INSERT INTO comment_reaction(watch_id, reaction_id) VALUES (@comment_id, @uuid)
Create Watch Comment:
@uuid = Unique id generated by backend script

INSERT INTO comment(comment_id, body, user_id)

VALUES (@uuid, @body, @user_id)

51

INSERT INTO watch_comment(watch_id,comment_id) VALUES (@watch_id, @uuid)

Create Comment Reply:
@uuid = Unique id generated by backend script

INSERT INTO comment(comment_id, body, user_id, parent_id)

VALUES (@uuid, @body, @user_id, @comment_id)

5.9 Medium

Inputs: @medium_id

52

Process: When the Medium screen is opened, it displays all the available episodes of this
channel. User can see broadcast dates of the shows with their plot summary. Also, user can
be guided to link in order to watch online this channel.

SQL Statements:

Fetch all the available episodes on channel:

SELECT episode_name, episode_info, trailer_url, date FROM episode
NATURAL JOIN
(SELECT episode_id, DATE(time) as date FROM scheduled_episode
WHERE medium_id = @medium_id GROUP BY date)

5.10 Calendar View

53

Inputs: @name, @date, @orderby
Process: When the Calendar View screen is opened, it displays broadcast dates of tv
shows and movies. User can sort shows and movies by their broadcast dates. Besides, user
can filter shows and movies by their names for detailed search.

SQL Statements:

Fetch All Shows with Their Broadcast Dates:

SELECT * FROM show
NATURAL JOIN
(SELECT episode_id, DATE(time) as date FROM scheduled_episode
GROUP BY date)

Filter Show by Broadcast Date:
SELECT * FROM show
NATURAL JOIN
(SELECT episode_id, DATE(time) as date FROM scheduled_episode
GROUP BY date)
ORDER BY
CASE WHEN @orderby = ‘ASC’ THEN date END ASC,
CASE WHEN @orderby = ‘DESC’ THEN date END DESC;

Filter Movie by Broadcast Date:

SELECT * FROM movie
ORDER BY
CASE WHEN @orderby = ‘ASC’ THEN release_date END ASC,
CASE WHEN @orderby = ‘DESC’ THEN release_date END DESC;

Filter Show by Name:

SELECT * FROM show
NATURAL JOIN
(SELECT episode_id, DATE(time) as date FROM scheduled_episode
GROUP BY date)
ORDER BY
CASE WHEN @orderby = ‘ASC’ THEN show_name END ASC,
CASE WHEN @orderby = ‘DESC’ THEN show_name END DESC;

Filter Movie by Name:

SELECT * FROM movie
ORDER BY
CASE WHEN @orderby = ‘ASC’ THEN movie_name END ASC,
CASE WHEN @orderby = ‘DESC’ THEN movie_name END DESC;

54

5.11 Admin Dashboard

Admin may open dashboard to create new movie, tv show, medium or artist. Admin
dashboard is entry point for all insertion/deletion operations.

55

5.11.1. Create New TV Show

Inputs: @show_name, @show_info, @trailer_url, @start_year, @medium, @image_urls

Process : When the Admin Dashboard screen is opened, admin can create TV show.

SQL Statements :

INSERT INTO movie (show_name, show_info, trailer_url, start_year, medium, image_urls)
VALUES(@show_name, @show_info, @trailer_url, @start_year, @medium, @image_urls);

56

5.11.2. Create New Movie

Inputs: @movie_name, @movie_description, @genre, @release_date, @trailer_url,
@image_urls

Process : When the Admin Dashboard screen is opened, admin can create TV show.

SQL Statements :

INSERT INTO movie (movie_name, movie_description, genre, release_date, trailer_url,
image_urls) VALUES(@movie_name, @movie_description, @genre, @release_date,
@trailer_url, @image_urls);

57

5.11.3. Create New Medium

Inputs: @medium_name, @medium_info, @image_urls

Process : After Admin successfully entered the admin dashboard, he can create new
medium.

SQL Statements :
 INSERT INTO medium(medium_name,medium_info, image_urls)

VALUES(@medium_name, @medium_info, @image_urls);

58

5.11.4. Create New Cast

Inputs: @cast_name, @cast_info, @cast_image, @cast_birthday
Process:
After Admin successfully entered the admin dashboard, he can create new cast member.

SQL Statements:
INSERT INTO cast(cast_name, cast_info, cast_birthday)

VALUES(@cast_name, @cast_info, @cast_birthday)

59

5.14. Modify/Delete TV Show

Inputs: @episode_no, @episode_name, @show_id, @season_id, @act_id, @image_urls,
@episode_info, @trailer_url
Process:
By clicking pen icons near the information, admin can make them editable. After making
them editable, admin can change their values. In order to delete the show or episode, admin
can press the Delete button. Clicking the plus button opens up the season creation modal.
By filling that modal admin can add new seasons to show. By clicking red remove icons
inside the season cards, admin can remove seasons from show. Similarly admin can add or
remove artists to cast of show.

60

SQL Statements:

Delete TV Show:

DELETE FROM show
WHERE show_id = @show_id;

Create New episode on TV Show:

INSERT INTO episode(episode_no, episode_name, show_id, season_id, act_id, image_urls,
episode_info, trailer_url)
VALUES(@episode_no, @episode_name, @show_id, @season_id, @act_id, @image_urls,
@episode_info, @trailer_url);

Update episodes:

UPDATE episode
SET trailer_url = @trailer_url,

episode_name = @episode_name,
episode_info = @episode_info,
image_urls = @image_urls,

WHERE episode_id = @episode_id;

Delete Episode:

DELETE FROM episode
WHERE episode_id = @episode_id;

5.15. Add/Delete Scheduled Episode

Inputs: @medium_id, @time, @episode_id
Process: To schedule episode on medium, admin should select medium and episode with
available timeslot. So system should check all scheduled episodes by their time and get
empty slots. As well as adding new episode to channel, admin is able to delete occupied
episode from channel/medium.

61

SQL Statements:

Fetch scheduled episodes on medium:

SELECT * FROM sheduled_episode where medium_id = @medium_id
AND time = @time;
//this displays the scheduled episodes and admin may see them to delete

Delete scheduled episode from medium:

DELETE FROM scheduled_episode
where episode_id = @episode_id;
// admin may cancel schedule

Fetch unscheduled episodes on medium:

SELECT time FROM sheduled_episode where medium_id = @medium_id
AND time <> @time;

Schedule episode on medium:

INSERT INTO scheduled_episode(episode_id, medium_id, time)
VALUES(@episode_id, @medium_id, @time)

5.16. Modify/Delete Movie

Inputs: @movie_id (binded to ‘x’ button) -> for Delete

 @movie_id, @movie_name, @movie_description, @genre, @imdb_rating,
@trailer_url, @release_date -> for Modify

Process: Admin can delete the movie from the database by clicking the ‘X’ button on the
movie page. Also he can modify the attributes of it.

SQL Statements:

DELETE FROM movie WHERE movie_id = @movie_id;

UPDATE movie
SET movie_name = @movie_name,

movie_description = @movie_description,
genre = @genre,
imdb_rating = @imdb_rating,
trailer_url = @trailer_url,

62

release_date = @release_date
WHERE movie_id = @movie_id;

5.17. Modify/Delete Cast

Inputs: @cast_id -> for Delete

@cast_id, @cast_name, @cast_image, @cast_info, @cast_birthday -> for
Update

Process: Admin can delete the cast member from the database by clicking the ‘X’ button on
the cast member page. Also he can modify the attributes of it.

SQL Statements:
DELETE FROM cast WHERE cast_id = @cast_id;

UPDATE cast
SET cast_name = @cast_name,
 cast_image_url = @cast_image_url,
 cast_info = @cast_info,
 cast_birthday = @cast_birthday,
WHERE cast_id = @cast_id;

5.18. Modify/Delete Medium

Inputs: @medium_id -> for Delete

@medium_id, @medium_name, @medium_info, @image_urls -> for Modify

Process: Admin can delete the medium from the database by clicking the ‘X’ button on the
cast member page. Also he can modify the attributes of it.

SQL Statements:
DELETE FROM medium WHERE medium_id = @medium_id;

UPDATE medium
SET medium_name = @medium_name,
 image_urls = @image_urls,
 medium_info = @medium_info,
WHERE medium_id = @medium_id;

63

6. Advanced Database Components

6.1 Views
Public User:

CREATE VIEW public_user AS
SELECT user_id, user_name, age, avatar_image_id, user_firstname,

User_lastname FROM user WHERE user_type <> ‘Admin’

6.2 Stored Procedures
Fuzzy Search:

It allows to search for an arbitrary string, it returns most similar movie names,
tv show names, usernames etc. sorted by their similarity value. This similarity can be
calculated with levenshtein distance.

6.3 Reports
Most Watched Shows:
SELECT show_name, COUNT(*) as watch_count FROM show

INNER JOIN show_watch ON
show.show_id = show_watch.show_id

GROUP BY show_name
ORDER BY watch_count DESC

Most Active Mediums:
SELECT medium_name, COUNT(*) as scheduled_episode_count FROM medium

INNER JOIN scheduled_episode ON
scheduled_episode.medium_id = medium.medium_id

GROUP BY medium_name
ORDER BY scheduled_episode_count DESC

Most Active Users:
SELECT username, COUNT(*) as watch_count FROM user

INNER JOIN watch ON watch.user_id = user.user_id
GROUP BY username
ORDER BY watch_count DESC

64

6.4 Triggers
● When a comment or reaction made to a user’s activity, system creates a new

notification that belongs to a user with related text and link attributes.
● When a show is deleted, system will delete all subscriptions to that show.
● When an episode is deleted, system will delete all ScheduledEpisodes related

to that episode.

6.5. Constraints
● Users and admins must be authenticated before using the Trackby.me
● Users’ sensitive information and credentials must be encrypted before stored in our

database.
● Users must read and accept the privacy & data policy agreements before using the

application.
● Only admins can modify/delete movies, TV series, comments. Normal users cannot

be able to do any kind of unauthorized actions.
● When any kind of movie, episode, medium or TV series deleted from the database,

the all respective relations will be deleted simultaneously. For instance, if admin
delete “Cars 3” movie; comments, rating value, discussions about “Cars 3” will also
be deleted.

● User cannot mark movies, episodes as watched before their air date.
● User cannot give multiple ratings to one show, he can only change the previous

rating.
● User cannot make unlimited comments that cause spamming.

65

7. Implementation Plan
We have decided to use following technologies for the respective parts of the application:

Frontend: React.js

Backend: Micro-services for each of the operations. These services can be implemented
with different programming languages, frameworks. (Node.js, Go, Python, Spring)

Storage: PostgreSQL.

66

