l-r::Illn.:-" "
UniveREY Bilkent University

Department of Computer Engineering

CS 353 - Database Systems Project

“Track by Me”

Project Design Report

Project Group Number: 18
Project Group Members:

Gokcan Degirmenci, Onur S6nmez, Fatih Tas, Orcun Yalcin

Supervisor & Course Instructor: Asst. Prof. Dr. Hamdi Dibeklioglu

Submitted at November 20, 2017

Contents
1.Revised E/R Model

2. Relation Schemas

2.1
2.2,
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.
2.9.

2.10.
2.11.
2.12.
2.13.
2.14.
2.15.
2.16.
2.17.
2.18.
2.19.
2.20.
2.21.
2.22.
2.23.

Show

Season

Episode

Movie
Similar_Movie

Act

Cast
Scheduled_Episode
Medium

Comment
Show_Comment
Episode_Comment
Season_Comment
Movie_Comment
Reaction
Comment_Reaction
Watch_Reaction
Watch
Season_Watch
Episode_Watch
Movie_Watch
Show_Watch

Rate

2.24. Show_Rate

2.25.

Movie_Rate

2.26. Season_Rate

2.27

. Episode_Rate

2.28. User

2.29.

Friendship

2.30. Subscribe

2.31.

3. Functional Dependencies and Normalization of Tables

Notification

4. Functional Components

4.1 Use Cases / Scenarios
4.2 Algorithms

4.3 Data Structures (Data Types)

5. User Interface Design and Corresponding SQL Statements

5.1 Login
5.2 Register

O 00 00 N O »un »n

10
10
11
12
12
13
14
14
15
16
16
17
17
18
19
19
20
20
21
22
22
23
24
24
25

26

27
27
29
29

30
30
31

5.3 Episode

5.4 Season

5.5 Show

5.5 Movie

5.6 User Profile

5.7 Friends

5.8 Homepage

5.9 Medium

5.10 Calendar View

5.11 Admin Dashboard
5.11.1. Create New TV Show
5.11.2. Create New Movie
5.11.3. Create New Medium
5.11.4. Create New Cast

5.14. Modify/Delete TV Show

5.15. Add/Delete Scheduled Episode

5.16. Modify/Delete Movie

5.17. Modify/Delete Cast

5.18. Modify/Delete Medium

6. Advanced Database Components

6.1 Views

6.2 Stored Procedures
6.3 Reports

6.4 Triggers

6.5. Constraints

7. Implementation Plan

32
35
38
42
44
45
47
51
52
54
55
56
57
58
59
60
61
62
62

63
63
63
63
64
64

65

1.Revised E/R Model

According to assistant’s review, we revised our E/R model by following guidelines given to
us:

e In first phase, we used lots of weak entity model. After review, we used total
participation instead of weak entity.

e We removed interfaces from E/R diagram and connected all entities with separate
relation to each other as suggested.

e We added notification model to E/R diagram since we need to notify users when any
activity or event related to user activities arise.

e We included some redundant foreign keys in entity models by underlining them as
dashed. In this version, we updated this too and removed unnecessary attributes.

e We altered Artist table to Cast table since more generic one is required to support all
cast including scenarists, artists, directors, etc.

e We put separate relation for similar movies instead of including it in table definition of
movie as string array.

e Also episode has relation with the show as well as season after update. We need to
know which tv show owns the episode. That is why, we added this relation to E/R
diagram.

subcomment

Medium

medium i
medium_name
medium_info

<

$cheduledEpisods

Cast
cast id
cast_name
cast_image
cast_info
cast_birthday
created_at
deleted_at
updated_at

User_comment friendship_id user id
friendship_status |_.__.____. trendshi user_name
riendship user
user_email Notifcation
2 user_password notification_id
I?eacnon user_firstname created_at
teaction_id user_lastname seen_at
reaction_type 1
age ext
created_at deleted_at link
" user_watch
watch_reaction updated_at Uuser_rate
created_at
avatar_image_id
Comment]' T Rate
comment id > rate_id
created at created_at | created at
movie_rate
$pisode_commend episode_watch episode_rate @7 season_walch season_rate show_watch show_rate ovie_commen
Show Movie
Efes S Ses..scn show id movie_id
episode _id season id crew crew
episods_no season_name show_name movie_name
episode_name season_episode season_info show_season limage_urls movie_description
image_urls season_year show_info image_urls
episode_info season_no created at enre
trailer_url image_urls o) g :
trailer_url updated_at similar_movie imdb_rating
| deleted_at created_at
start year updated_at
show_episode trailer url deleted_at
trailer_url
cason_ac) release_date
Act subscribe

User

act role

2. Relation Schemas

e Note that we used UPPER CASE characters for foreign keys since docs does not
enable to put dashed ones.

2.1. Show

Relational Model:

Show(show_id, ACT_ID, show_name, show_info, start_year,
image_urls, trailer_url, created_at, updated_at)

Functional Dependencies:

show_id -> act_id, show_name, show_info, start_year, image_urls,
trailer_url, created_at, updated_at

Candidate Keys:
{{show_id}}

Normal Form:
BCNF

Table Definition:

CREATE TABLE show(

show_id INTEGER NOT NULL AUTO_INCREMENT,
show_name VARCHAR(45) NOT NULL,

show_info VARCHAR(255),

start_year INTEGER,

image_urls TEXT,

trailer_url VARCHAR(75),

created_at TIMESTAMP,

updated_at TIMESTAMP,

FOREIGN KEY(act_id) references ACT(act_id) ON DELETE CASCADE,
PRIMARY KEY(show_id)

2.2. Season

Relational Model:
Season(season_id, SHOW _ID, ACT_ID, episode_name, season_no, season_info,
season_year, image_urls, trailer_url)

Functional Dependencies:

season_id -> show_id act_id episode_name season_no season_info,
season_year, image_urls, trailer_url

Candidate Keys:
Normal Form: BCNF

Table Definition:

CREATE TABLE season(

season_id INTEGER NOT NULL AUTO_INCREMENT,
episode_name VARCHAR(45) NOT NULL,

season_nho INTEGER NOT NULL,

season_info VARCHAR(255),

season_year INTEGER,

image_urls TEXT,

trailer_url VARCHAR(75),

act_id INTEGER,

show _id INTEGER,

FOREIGN KEY(show_id) references SHOW(show_id) ON DELETE
CASCADE,

FOREIGN KEY(act_id) references ACT(act_id),
PRIMARY KEY(season_id)

2.3. Episode

Relational Model:

Episode(episode_id, SHOW _ID, SEASON_ID, ACT_ID,
episode_no, episode_name, image_urls, episode_info, trailer_url)

Functional Dependencies:

episode_id -> episode_no, episode_name, image_urls, episode _info,

trailer_url
Candidate Keys:
{{episode _id}}

Normal Form:
BCNF

Table Definition:
CREATE TABLE episode(
episode_id
episode_no
episode_name

image_urls
episode_info
trailer_url
season_id
show_id

INTEGER NOT NULL AUTO_INCREMENT,
INTEGER NOT NULL,
VARCHAR(45) NOT NULL,

TEXT,

VARCHAR(255),

VARCHAR(75),

INTEGER,

INTEGER,

FOREIGN KEY(season_id) references SEASON(season_id) ON DELETE

CASCADE,

FOREIGN KEY(show_id) references SHOW(show_id) ON DELETE

CASCADE,

FOREIGN KEY(act_id) reference ACT(act_id) ON DELETE CASCADE,
PRIMARY KEY (episode_id)

2.4. Movie

Relational Model:

Movie(movie_id, movie_name, movie_description,
genre, imdb_rating, trailer_url, relase_date, updated_at, created_at)

Functional Dependencies:

movie_id -> movie_name, movie_description, genre, imdb_rating, image_urls,
release date, trailer_url, updated_at, created_at
Candidate Keys:

{{movie_id}}

Normal Form:
BCNF

Table Definition:
CREATE TABLE movie(

movie_id INTEGER NOT NULL AUTO_INCREMENT,
movie_name VARCHAR(45) NOT NULL,

image_urls TEXT,

movie_description VARCHAR(255),

trailer_url VARCHAR(75),

PRIMARY KEY(movie_id)

2.5. Similar_Movie

Relational Model:

Similar_Movie(first_movie_id, second_movie_id)

Functional Dependencies:
No dependency

Candidate Keys:

{{first._movie_id, second_movie_id}}

Normal Form:
BCNF

Table Definition:
CREATE TABLE similar_movie(
first_movie_id INTEGER NOT NULL,
second_movie _id INTEGER NOT NULL,
FOREIGN KEY (first_movie_id) references MOVIE(move_id)
ON DELETE CASCADE,
FOREIGN KEY(second_movie_id) references RATE(movie_id)
ON DELETE CASCADE,
PRIMARY KEY (first_movie_id, second_movie_id)

2.6. Act

Relational Model:
Act(act_id, PERSONNEL_ID, act_role)

Functional Dependencies:
act_id -> personnel_id, act_role

Candidate Keys:
{{act_id}}

Normal Form:
BCNF

Table Definition:
CREATE TABLE act(

act_id INTEGER NOT NULL AUTO_INCREMENT,
act_role VARCHAR(45) CHECK

(act_role IN (‘Artist’, ‘Director’, ‘Scenarist’, ‘Other’)),

cast_id INTEGER NOT NULL,

FOREIGN KEY(cast_id) references CAST(cast_id)
ON DELETE CASCADE,
PRIMARY KEY (act_id)

2.7. Cast

Relational Model:

Cast(cast_id, cast_name, cast_image, cast_info, cast_birthday, created_at,
updated_at)

Functional Dependencies:
cast_id -> cast_name, cast_info, cast_image, cast_birthday, created_at,
updated_at
Candidate Keys:
{{cast_id}}

Normal Form:
BCNF

Table Definition:
CREATE TABLE cast(

cast_id INTEGER NOT NULL AUTO_INCREMENT,
cast_name VARCHAR(45) NOT NULL,

cast_image_url VARCHAR(45),

cast_info VARCHAR(255),

cast_birthday TIMESTAMP,

created_at TIMESTAMP,

updated_at TIMESTAMP,

PRIMARY KEY (personnel_id)

10

2.8. Scheduled Episode

Relational Model:
Scheduled Episode(EPISODE_ID, MEDIUM_ID, time)

Functional Dependencies:
episode_id, medium_id -> time

Candidate Keys:
{{episode _id, medium_id}}

Normal Form:
BCNF

Table Definition:
CREATE TABLE scheduled_episode(

time TIMESTAMP,
episode_id INTEGER NOT NULL,
medium_id INTEGER NOT NULL,

FOREIGN KEY (episode_id) references EPISODE(episode_id),

FOREIGN KEY(medium_id) references MEDIUM(medium_id)

11

2.9. Medium

Relational Model:

Medium(medium_id, medium_name, medium_info, image_urls)
Functional Dependencies:

episode_id -> episode_no, episode_name, image_urls, episode_info,
trailer_url
Candidate Keys:

{{medium_id}}

Normal Form:
BCNF

Table Definition:
CREATE TABLE medium(

medium_id INTEGER NOT NULL AUTO_INCREMENT,
medium_name VARCHAR(45) NOT NULL,

medium_info VARCHAR(255),

image_urls TEXT,

PRIMARY KEY (medium_id)

2.10. Comment

Relational Model:
Comment(comment_id, PARENT_ID, USER_ID, body, created_at)

Functional Dependencies:
comment_id -> parent_id, user_id, body, created_at

Candidate Keys:
{{comment_id}}

Normal Form:
BCNF

12

Table Definition:
CREATE TABLE comment(

comment_id INTEGER NOT NULL AUTO_INCREMENT,
body VARCHAR(255) NOT NULL,

created_at TIMESTAMP,

user_id INTEGER NOT NULL,

parent_id INTEGER,

FOREIGN KEY (parent_id) references COMMENT(comment_id),
FOREIGN KEY (user_id) references USER(user_id),
PRIMARY KEY(comment_id)

2.11. Show_Comment

Relational Model:

Show_Comment(show_id, comment_id)

Functional Dependencies:
No dependency

Candidate Keys:
{{show_id, comment_id}}

Normal Form:
BCNF

Table Definition:

CREATE TABLE show_comment(
show_id INTEGER NOT NULL,
comment_id INTEGER NOT NULL,
FOREIGN KEY(show_id) references SHOW,
FOREIGN KEY(comment_id) references COMMENT,
PRIMARY KEY(comment_id, show_id)

13

2.12. Episode_Comment

Relational Model:

Episode_ Comment(episode_id, comment_id)

Functional Dependencies:
No dependency

Candidate Keys:
{{episode_id, comment_id}}

Normal Form:
BCNF

Table Definition:

CREATE TABLE episode_comment(
episode_id INTEGER NOT NULL,
comment_id INTEGER NOT NULL,
FOREIGN KEY (episode _id) references EPISODE
ON DELETE CASCADE,
FOREIGN KEY(comment_id) references COMMENT
ON DELETE CASCADE,
PRIMARY KEY(comment_id, episode_id)

14

2.13. Season_Comment

Relational Model:

Season_Comment(season_id, comment_id)

Functional Dependencies:
No dependency

Candidate Keys:
{{season_id, comment_id}}

Normal Form:
BCNF

Table Definition:

CREATE TABLE season_comment(
season_id INTEGER NOT NULL,
comment_id INTEGER NOT NULL,
FOREIGN KEY (season_id) references SEASON
ON DELETE CASCADE,
FOREIGN KEY(comment_id) references COMMENT
ON DELETE CASCADE,
PRIMARY KEY(comment_id, season_id)

15

2.14. Movie_Comment

Relational Model:

Movie_Comment(movie_id, comment_id)

Functional Dependencies:
No dependency

Candidate Keys:
{{movie_id, comment_id}}

Normal Form:
BCNF

Table Definition:

CREATE TABLE movie_comment(
movie_id INTEGER NOT NULL,
comment_id INTEGER NOT NULL,
FOREIGN KEY(movie_id) references MOVIE
ON DELETE CASCADE,
FOREIGN KEY(comment_id) references COMMENT
ON DELETE CASCADE,
PRIMARY KEY(comment_id, movie_id)

2.15. Reaction

Relational Model:
Reaction(reaction_id, reaction_type, created_at)

Functional Dependencies:
reaction_id -> reaction_type, created_at

Candidate Keys:
{{reaction_id}}

Normal Form:
BCNF

16

Table Definition:
CREATE TABLE reaction(

reaction_id INTEGER NOT NULL AUTO_INCREMENT,
reaction_type VARCHAR(20) NOT NULL,

user_id INTEGER NOT NULL,

created_at TIMESTAMP,

FOREIGN KEY (user_id) references USER ON DELETE CASCADE,
PRIMARY KEY (reaction_id)

2.16. Comment_Reaction

Relational Model:

Comment_Reaction(comment_id, reaction_id)

Functional Dependencies:
No dependency

Candidate Keys:
{{comment_id, reaction_id}}

Normal Form:
BCNF

Table Definition:

CREATE TABLE comment_reaction(
comment_id INTEGER NOT NULL,
reaction_id INTEGER NOT NULL,
FOREIGN KEY(comment_id) references COMMENT
ON DELETE CASCADE,
FOREIGN KEY/((reaction_id) references REACTION
ON DELETE CASCADE,
PRIMARY KEY(comment_id, reaction_id)

17

2.17. Watch_Reaction

Relational Model:

Watch_Reaction(watch_id, reaction_id)

Functional Dependencies:
No dependency

Candidate Keys:
{{watch_id, reaction_id}}

Normal Form:
BCNF

Table Definition:

CREATE TABLE watch_reaction(
watch_id INTEGER NOT NULL,
reaction_id INTEGER NOT NULL,
FOREIGN KEY (watch_id) references WATCH
ON DELETE CASCADE,
FOREIGN KEY (reaction_id) references REACTION
ON DELETE CASCADE,
PRIMARY KEY (watch_id, reaction_id)

2.18. Watch

Relational Model:
Watch(watch_id, USER_ID, created_at)

Functional Dependencies:
No dependency

Candidate Keys:
{{watch_id}}

Normal Form:
BCNF

18

Table Definition:

CREATE TABLE watch(
watch_id INTEGER NOT NULL AUTO_INCREMENT,
user_id INTEGER NOT NULL,

FOREIGN KEY (user_id) references USER
ON DELETE CASCADE,
PRIMARY KEY (watch_id)

2.19. Season_Watch

Relational Model:

Season_Watch(watch_id, season_id)

Functional Dependencies:
No dependency

Candidate Keys:
{{watch_id, season_id}}

Normal Form:
BCNF

Table Definition:

CREATE TABLE season_watch(
watch_id INTEGER NOT NULL,
season_id INTEGER NOT NULL,
FOREIGN KEY(watch_id) references WATCH
ON DELETE CASCADE,
FOREIGN KEY(season_id) references SEASON
ON DELETE CASCADE,
PRIMARY KEY(watch_id, season_id)

2.20. Episode_Watch

Relational Model:

Episode_Watch(watch_id, episode_id)

Functional Dependencies:
No dependency

Candidate Keys:

19

{{watch_id, episode_id}}

Normal Form:
BCNF

Table Definition:

CREATE TABLE episode_watch(
watch_id INTEGER NOT NULL,
episode_id INTEGER NOT NULL,
FOREIGN KEY (watch_id) references WATCH
ON DELETE CASCADE,

FOREIGN KEY (episode_id) references EPISODE

ON DELETE CASCADE,
PRIMARY KEY (watch_id, episode_id)

2.21. Movie_Watch

Relational Model:

Movie_Watch(watch_id, movie_id)

Functional Dependencies:
No dependency

Candidate Keys:
{{watch_id, movie_id}}

Normal Form:
BCNF

Table Definition:

CREATE TABLE movie_watch(
watch_id INTEGER NOT NULL,
movie_id INTEGER NOT NULL,
FOREIGN KEY(watch_id) references WATCH
ON DELETE CASCADE,
FOREIGN KEY(movie_id) references MOVIE
ON DELETE CASCADE,
PRIMARY KEY (watch_id, movie_id)

20

2.22. Show_Watch

Relational Model:

Show_Watch(show_id, watch_id)

Functional Dependencies:
No dependency

Candidate Keys:
{{show_id, watch_id}}

Normal Form:
BCNF

Table Definition:

CREATE TABLE show_watch(
watch_id INTEGER NOT NULL,
show_id INTEGER NOT NULL,
FOREIGN KEY (watch_id) references WATCH
ON DELETE CASCADE,
FOREIGN KEY(show_id) references SHOW
ON DELETE CASCADE,
PRIMARY KEY (watch_id, show_id)

2.23. Rate

Relational Model:
Rate(rate_id, rating, created_at)

Functional Dependencies:
rate_id -> rating, created_at

Candidate Keys:
{{rate_id}}

Normal Form:
BCNF

Table Definition:
CREATE TABLE rate(

21

rate_id INTEGER NOT NULL AUTO_INCREMENT,

user_id INTEGER NOT NULL,
rating DOUBLE,
created_at TIMESTAMP

FOREIGN KEY (user_id) references USER(user_id)
ON DELETE CASCADE,
PRIMARY KEY (rate_id)

2.24. Show_ Rate

Relational Model:

Show_Rate(rate_id, show_id)

Functional Dependencies:
No dependency

Candidate Keys:
{{rate_id, show_id}}

Normal Form:
BCNF

Table Definition:
CREATE TABLE show_rate(
show _id INTEGER NOT NULL,
rate_id INTEGER NOT NULL,
FOREIGN KEY(show_id) references SHOW(show_id)
ON DELETE CASCADE,
FOREIGN KEY/(rate_id) references RATE(rate_id)
ON DELETE CASCADE,
PRIMARY KEY(rate_id, show_id)

2.25. Movie_Rate

Relational Model:

Movie_Rate(rate_id, movie_id)

Functional Dependencies:
No dependency

Candidate Keys:

22

{{rate_id, movie_id}}

Normal Form:
BCNF

Table Definition:

CREATE TABLE movie_rate(
rate_id INTEGER NOT NULL,
movie_id INTEGER NOT NULL,
FOREIGN KEY/(rate_id) references RATE(rate_id),
FOREIGN KEY(movie_id) references MOVIE(movie_id)
ON DELETE CASCADE,
PRIMARY KEY (rate_id, movie_id)

2.26. Season_Rate

Relational Model:

Season_Rate(rate_id, season_id)

Functional Dependencies:
No dependency

Candidate Keys:
{{rate_id, season_id}}

Normal Form:
BCNF

Table Definition:

CREATE TABLE season_rate(
season_id INTEGER NOT NULL,
rate_id INTEGER NOT NULL,
FOREIGN KEY(season_id) references USER(season_id)
ON DELETE CASCADE,
FOREIGN KEY (rate_id) references RATE(rate_id),
PRIMARY KEY/(rate_id, season_id)

2.27. Episode_Rate

Relational Model:

23

Episode_Rate(rate_id, episode_id)

Functional Dependencies:
No dependency

Candidate Keys:
{{rate_id, episode_id}}

Normal Form:
BCNF

Table Definition:

CREATE TABLE episode_rate(
episode_id INTEGER NOT NULL,
rate_id INTEGER NOT NULL,
FOREIGN KEY (episode_id) references USER(episode_id)
ON DELETE CASCADE,
FOREIGN KEY/(rate_id) references RATE(rate_id),
PRIMARY KEY (rate_id, episode_id)

2.28. User

Relational Model:

User(user_id, user_name, user_type, user_email,
user_password, user_firstname, user_lastname, age,
image_url, created_at, updated_at)

Functional Dependencies:
user_id -> user_name, user_type, user_email, user_password,
user_firstname, user_lastname, age, image_url, created_at, updated_at
Candidate Keys:
{{user_id}}

Normal Form:
BCNF

Table Definition:
CREATE TABLE user(

24

user_id INTEGER NOT NULL AUTO_INCREMENT,

user_name VARCHAR(25) NOT NULL UNIQUE,
user_email VARCHAR(25) NOT NULL UNIQUE,
user_password VARCHAR(32) NOT NULL UNIQUE,
user_type VARCHAR(25) NOT NULL CHECK
(user_type IN (‘Admin’, ‘Normal’)),

user_firstname VARCHAR(25),

user_lastname VARCHAR(25) ,

age INTEGER,

image_url VARCHAR(55),

created_at TIMESTAMP,

updated_at TIMESTAMP,

PRIMARY KEY (user_id)

2.29. Friendship

Relational Model:

Friendship(first_user_id, second_user_id, friendship_status)

Functional Dependencies:
No dependency

Candidate Keys:
{{first_user_id, second_user_id}}

Normal Form:
BCNF

Table Definition:

CREATE TABLE friendship(
first_user_id INTEGER NOT NULL,
second_user _id INTEGER NOT NULL,

friendship_status STRING NOT NULL CHECK
(friendship_status IN(‘PENDING, ‘APPROVED’, ‘REJECTED")),
FOREIGN KEY/ first_user_id) references USER(user_id)

ON DELETE CASCADE,

FOREIGN KEY(second_user_id) references USER(user_id)
ON DELETE CASCADE,

PRIMARY KEY (first_user _id, second_user_id)

25

2.30. Subscribe

Relational Model:

Subscribe(show id, user id)

Functional Dependencies:
No dependency

Candidate Keys:
{{show_id, user_id}}

Normal Form:
BCNF

Table Definition:

CREATE TABLE subscribe(
show_id INTEGER NOT NULL,
user_id INTEGER NOT NULL,
friendship_status INTEGER NOT NULL,
FOREIGN KEY(show _id) references SHOW(show _id)
ON DELETE CASCADE,
FOREIGN KEY (user_id) references USER(user _id)
ON DELETE CASCADE,
PRIMARY KEY (user_id, show_id)

2.31. Notification

Relational Model:
Notification(notification_id, USER_ID, status, created_at, seen_at, text, link)

Functional Dependencies:

Candidate Keys:
{{notification_id}}

Normal Form:
BCNF

26

Table Definition:
CREATE TABLE notification(
notification_id INTEGER NOT NULL AUTO_INCREMENT,

user_id INTEGER NOT NULL,
status INTEGER,

created_at TIMESTAMP,

seen_at TIMESTAMP,

text VARCHAR(255),

link VARCHAR(60),

FOREIGN KEY (user_id) references USER(user _id)
ON DELETE CASCADE,
PRIMARY KEY (notification_id)

3. Functional Dependencies and Normalization of
Tables

Functional dependencies and normal forms are defined in Relation Schemas part of this
report. All relations are checked whether they are in Boyce-Codd normal form. It is
concluded that decomposition is not necessary.

27

4. F

unctional Components

4.1 Use Cases / Scenarios

Guest:
[]

Admin
[]

Guest can list TV series and movies with (basic) filters such as genre,TrackBy rating,
popularity, etc.

Guest can review cast, images and trailers of tv series and movies through their
showcase pages.

Guest can make search specific TV Series and movies.

Guest can see upcoming episodes of TV Series and movies through the Calendar.

User can login to system with email and password.

User can mark episodes as watched

User can subscribe to specific TV Series

User can get notified when the new episode of subscribed tv series arrives.

User can make search specific TV Series and movies.

User can comment on TV series, specific episodes & seasons and movies.

User can comment on other users’ actions(their comments etc.)

User can rate TV series, specific episodes & seasons and movies.

User can drop reaction emoji to other users’ actions.

User can send friendship requests to other users.

User can accept or ignore friendship requests.

User can list TV series and movies with advanced filters such as IMDB rating, length,
language, origin country of the movie.

User can review cast, images and trailers of tv series and movies through their
showcase pages.

User can check out the upcoming tv series’ episodes by take a look at “Calendar”.
User can avoid spoilers by configuring the personal settings.

User can get email notifications for their actions and subscriptions.

User can start discussion about TV series and movies.

Admin can login to system with email and password.

Admin can ban users from the platform.

28

e Admin can warn users because of their flagged actions.

e Admin can delete comments.

e Admin can modify comments according to community rules.

e Admin can tag TV series, movies as Editor’'s Choice.

e Admin can add specific movies, TV series.

e Admin can modify the information related to movies and TV series.
e Admin can delete the occurrence of specific movies and TV series.

e Admin can give and take some of the administrative rights to other users.

TRACKBYME USE CASE DlAGRAM November 20, 2017

Mark as Ban/Warn users

watched

Subscribe to
TV Series

User Add/iRemove/Modify

TV series, movies

User also can do all of
the actions Guest can
do

Give and take

admin rights

Tag as Editor's
Choice

Review
showcase
pages

|

Natification Service Guest

Get notified
about actions
and updates

Make basic

search

| <<extends>>
h

See
upcoming TV
Series, Movies
through
Calendar

Send
notifications

29

4.2 Algorithms

How do we calculate 10-star rating?

Constraints:

- Have user actually marked that movie as watched before rate it?

- How many “bad” and “good” reactions he got on his rate action?

- Are other users actually disliking or liking his rate to movie? (Do they find it helpful or
not)

- How old is the account? (since its creation date)

- How active is the user? (check the total comments, watched movies, etc)

- Is he just spamming with 1-star ratings? Or is he a bot that gives 5-star to literally
everything?

- How many followers (friends) he got? (If he is influential person, we multiply his rating
with some predefined factor)

After correctly calculating and computing the overall rating of the specific movie, episode,
season or TV Series as a whole; we simultaneously change the of it.

4.3 Data Structures (Data Types)

We will use built-in data types of MySQL such as :

TEXT

DATE
VARCHAR
INTEGER
TIMESTAMP
DOUBLE

30

5. User Interface Design and Corresponding SQL
Statements

5.1 Login

Email:

Password:

Login

Inputs: @email, @password
Process: User enters her email and password to enter the system.

SQL Statements:

Login

SELECT email, password

FROM users

WHERE email=@email AND password = @password

31

5.2 Register

Email:
Username:
First Name:
Last Name:

Birthday:

Password:

. | agree to the terms and conditions to use this website

Register

Inputs: @email, @password, @username, @firstname, @lastname, @birthdate
Process: User specify her email, selected password, selected user name, her first name,
last name and birthdate to register the system. Also, user should accept user agreement in
order to register the system.

SQL Statements:
Check if email and username exists:
SELECT email, username FROM user WHERE email = @email OR
username=@username;
Save User To Database: // hashed password will be put into db

INSERT INTO user (email, username, firstname,lastname, password, birthdate)
VALUES(@email, @username, @firstname, @lastname, @password, @birthdae)

32

5.3 Episode

eps1.0_hellofriend.mov

The premiere of'the psychological thriller finds cyber-
security engineer and vigilante-styled computer hacker
Elliot wooed by a notorious hacker; and an evil
corporation hacked.

W 9.5 RateyYy May27,2015

#y Christian Slater a4 Rami Malek Carly Chaikin m | Martin Wallstrom @ Portia Doubleday
ol v Robor ef oo Y Darlene Rl e S Angeta

Show All Cast

38 Comments |= Sort By

0 Write a comment
o Donnie
ply @

Show More Comments...

Inputs: @episode_id @season_id, @user_id, @rating

Process: The episode screen has four main features. Firstly, when the episode screen is
opened, it displays summary of episode with name of the episode. Also, user can see date
of release of the episode. Secondly, user can see whether she watched or liked episode.
User can mark as watched, if she watch this episode. Thirdly, user can remark whether she
liked episode or not by pressing emoji buttons. Fourthly, user can see cast and crew credits
of the episode. Fourthly, user can write and edit comments on episode. Besides, user can
see, reply and like comments by other users. Also, comments can be filtered by count of
reply or like.

33

SQL Statements

Fetch Episode Info:
SELECT * FROM episode WHERE episode_id = @episode _id

Fetch Comments:

SELECT comment.* FROM comment
INNER JOIN episode_comment ON episode_comment.episode_id = @episode _id
INNER JOIN public_user ON comment.user_id = public_user.user id

Fetch Comment Reactions:
SELECT reaction.*, comment_reaction.comment_id FROM reaction
INNER JOIN comment_reaction
ON comment_reaction.comment_id
IN (SELECT comment_id FROM comment
INNER JOIN episode_comment ON
episode_comment.episode_id = @episode_id
)

GROUP BY comment_reaction.comment _id, reaction.reaction_type

Fetch Comment Replies:
SELECT comment.* FROM comment
INNER JOIN public_user ON comment.user_id = public_user.user_id
WHERE parent_id IN
(SELECT comment_id FROM comment
INNER JOIN episode_comment ON episode_comment.episode_id =
@episode_id
)
GROUP BY parent_id

Create New Comment:

@uuid = Unique id generated by backend code

INSERT INTO comment(comment_id, body, user_id) VALUES(@uuid, @body, @user_id)
INSERT INTO episode_comment(comment_id, episode_id) VALUES(@uuid, @episode_id);

Fetch Is Watched:
SELECT COUNT(*) FROM watch,
INNER JOIN episode_watch ON
episode_watch.episode_id = @episode_id AND
WHERE
watch.user_id = @user _id

Fetch Is Rated:
SELECT rating FROM rate
INNER JOIN episode_rate ON
episode_rate.episode_id = @episode_id AND
rate.user_id = @user_id

34

Cast:

SELECT cast.* FROM act
INNER JOIN episode_acts ON act.act_id =episode_act.act_id
INNER JOIN cast.cast_id = act.cast_id

Rate Episode (If It isn’t rated before):
@uuid = Unique id generated by backend script

INSERT INTO rating(rating_id, user_id, rating) VALUES (@uuid, @user_id, @rating)
INSERT INTO episode_rating(rating_id, episode_id) VALUES(@uuid,@episode_id);

Rate Episode (If It is already rated):
UPDATE rating SET rating=@rating
WHERE rating_id IN
(SELECT rating_id FROM episode_rate WHERE episode_id = @episode_id)
AND user_id = @user_id

35

5.4 Season

MR. Robot Season 1
2015 Mark as Watched W 9.5 RateyYy 10 Episodes

. May 27, 2015 . Jul1,2015
eps1.0_hellofriend.mov eps1.1_ones-and-zerOes.mpeg

The premiere of the psychological thriller finds ; \ Elliot is torn between accepting a job offer
cyber-security engineer and vigilante-styled ... o * 4 from an evil corporation and joining the ...

= | % 9.5 Ratevyy Watchec p % 9.5 Rate ¥ Mark as Watched

Show All Episodes

#m] Christian Slater 'y Rami Malek Carly Chaikin] Martin Wallstrom % Portia Doubleday
W 1 Robat E‘ Eliot @ Darlene g Tyrel AS Angeta

Show All Cast

38 Comments | Sort By

o Write a comment
Donnie
0 Great season!!!

Reply @3 @0 &0 o &0 &o

View All 5 Replies w

Katie
| love this show

Reply @3 @0 @0 o &0 &o

Show More Comments...

Inputs: @season_id, @show_id, @user_id, @comment_body

Process: The season screen has four main features. Firstly, when the season screen is
opened, it displays all of the episodes in selected season and their details. Also, user can
see whether she watched or liked season. User can mark as watched, if she watch this

season. Secondly, user can remark whether she liked season or not by pressing like
buttons. Thirdly, user can see cast and crew credits of the season. Fourthly, user can write
and edit comments on season. Besides, user can see, reply and like comments by other
users. Also, comments can be filtered by count of reply or like.

SQL Statements:

Fetch Season Info:
SELECT * FROM season WHERE season_id = @season_id

Fetch Comments:

SELECT comment.* FROM comment
INNER JOIN season_comment ON season_comment.season_id = @season_id
INNER JOIN public_user ON comment.user_id = public_user.user_id

Fetch Comment Reactions:
SELECT reaction.*, comment_reaction.comment_id FROM reaction
INNER JOIN comment_reaction
ON comment_reaction.comment_id
IN (SELECT comment_id FROM comment
INNER JOIN season_comment ON
season_comment.season_id = @season_id

)

GROUP BY comment_reaction.comment_id, reaction.reaction_type

Fetch Comment Replies:
SELECT comment.* FROM comment
INNER JOIN public_user ON comment.user_id = public_user.user id
WHERE parent_id IN
(SELECT comment_id FROM comment
INNER JOIN season_comment ON season_comment.season_id =
@season_id

)
GROUP BY parent_id

Create New Comment:

@uuid = Unique id generated by backend code

INSERT INTO comment(comment_id, body, user_id) VALUES(@uuid, @body, @user_id)
INSERT INTO season_comment(comment_id, season_id) VALUES(@uuid, @season_id);

Fetch Is Watched:
SELECT COUNT(*) FROM watch,
INNER JOIN season_watch ON
season_watch.season_id = @season_id
WHERE watch.user_id = @user _id

37

Fetch Is Rated:
SELECT rating FROM rate
INNER JOIN season_rate ON
season_rate.season_id = @season_id AND
rate.user_id = @user_id

Cast:

SELECT cast.* FROM act
INNER JOIN season_acts ON act.act_id =season_act.act_id
INNER JOIN cast ON cast.cast_id = act.cast _id

Rate Season(If It isn’t rated before):
@uuid = Unique id generated by backend script

INSERT INTO rating(rating_id, user_id, rating) VALUES (@uuid, @user_id, @rating)
INSERT INTO season_rating(rating_id, season_id) VALUES(@uuid,@season_id);

Rate Season (If It is already rated):
UPDATE rating SET rating=@rating
WHERE rating_id IN
(SELECT rating_id FROM season_rate WHERE season_id = @season_id)
AND user_id = @user_id

Fetch Episodes
SELECT * FROM episode
WHERE season_id = @season_id

Fetch Episodes Is Rated
SELECT rating FROM rate
LEFT JOIN episode_rate ON
episode_rate.episode_id IN

(SELECT * FROM episode WHERE season_id = @season_id) AND

rate.user_id = @user_id
GROUP BY episode _id

Fetch Episodes Is Watched:
SELECT COUNT(*) FROM watch,
INNER JOIN episode_watch ON
episode_rate.episode_id IN
(SELECT * FROM episode WHERE season_id = @season_id)AND
WHERE watch.user_id = @user _id
GROUP BY episode_id

38

MR. Robot Directed by

Mr. Robot follows Elliot Alderson, a young computer Niels Arden Oplev
programmer with an anxiety_disorder, who is recruited Written by
by Mr Robot and his anarchist team of hackers Sam Esmail
fsociety'.
% 9.5 Rateyy Mark As Watched Subscribe 3 Seasons

Mr. Robot: Season 3 Mr. Robot: Season 2 =L Mr. Robot: Season 1

A
2017, USA, 9 episodes 2016, USA, 12 episodes 2015, USA, 10 episodes

% 9.5 Ratevy i W95 Ratetyy % 9.5 Ratety
Mark as Watched Watchec Mark as Watched

@ Christian Slater l I Rami Malek Carly Chaikin [] Martin Wallstrom Portia Doubleday
Q Mr. Robo z‘ Eliat a Darlene g! Tyrel B%‘ Angela

Show All Cast

38 Comments | Sort By

o Write a comment

Donnie
0 Great show!!! Great cast!!!
Reply @3 @0 &0 o &0 &o

View All 5 Replies w

Katie
0 | love this show

Reply @3 @0 @0 o o &o

Show More Comments...

Inputs: @show _id, @user_id, @rate, @body

Process: The show screen has three main features. Firstly, when the show screen is
opened, it displays details of the show includes crew credits, number of seasons, subscribe,
user ratings and plot summary. Also, user can see whether she watched or liked show. User
can mark as watched, if she watch this show. Secondly, user can display all of the episodes
of the show with their user ratings. Thirdly,user can write and edit comments on show.
Besides, user can see, reply and like comments by other users. Also, comments can be
filtered by count of reply or like.

SQL Statements:

Fetch Show Info:
SELECT * FROM show WHERE show_id = @show _id

Fetch Comments:

SELECT comment.* FROM comment
INNER JOIN public_user ON comment.user_id = public_user.user_id
INNER JOIN show_comment ON show_comment.show_id = @show_id

Fetch Comment Reactions:
SELECT reaction.*, comment_reaction.comment_id FROM reaction
INNER JOIN comment_reaction
ON comment_reaction.comment_id
IN (SELECT comment_id FROM comment
INNER JOIN show_comment ON
show_comment.show_id = @show _id

)

GROUP BY comment_reaction.comment _id, reaction.reaction_type

Fetch Comment Replies:
SELECT comment.* FROM comment
INNER JOIN public_user ON comment.user_id = public_user.user _id
WHERE parent_id IN
(SELECT comment_id FROM comment
INNER JOIN show_comment ON show_comment.season_id = @show _id

)
GROUP BY parent_id

Create New Comment:

@uuid = Unique id generated by backend code

INSERT INTO comment(comment_id, body, user_id) VALUES(@uuid, @body, @user_id)
INSERT INTO show_comment(comment_id, show_id) VALUES(@uuid, @show_id);

40

Fetch Is Watched:
SELECT COUNT(*) FROM watch,
INNER JOIN show_watch ON
show_watch.show_id = @show_id
WHERE watch.user_id = @user _id

Fetch Is Rated:
SELECT rating FROM rate
INNER JOIN show_rate ON
show_rate.show_id = @season_id AND
rate.user_id = @user_id

Cast:

SELECT cast.* FROM act
INNER JOIN show_act ON act.act_id = show_act.act_id
INNER JOIN cast ON cast.cast_id = act.cast _id

Rate Show(If It isn’t rated before):
@uuid = Unique id generated by backend script

INSERT INTO rating(rating_id, user_id, rating) VALUES (@uuid, @user_id, @rating)
INSERT INTO show_rating(rating_id, show_id) VALUES(@uuid,@show_id);

Fetch Is Subscribed:
SELECT * FROM subscribe WHERE user_id=@user_id AND show_id = @show_id

Subscribe
INSERT INTO subscribe(user_id, show_id) VALUES(@user_id, @show _id)

Unsubscribe
DELETE FROM subscribe WHERE user_id=@user_id AND show_id = @show_id

Rate Show (If It is already rated):
UPDATE rating SET rating=@rating
WHERE rating_id IN
(SELECT rating_id FROM show_rate WHERE show_id = @show_id) AND
user_id = @user _id

Fetch Seasons
SELECT * FROM season
WHERE show_id = @show_id

Fetch Season Is Rated
SELECT rating FROM rate
LEFT JOIN season_rate ON
season_rate.episode_id IN

41

(SELECT * FROM season WHERE show_id = @show_id) AND
rate.user_id = @user_id
GROUP BY season _id

Fetch Season Is Watched:
SELECT COUNT(*) FROM watch,
INNER JOIN season_watch ON
season_rate.episode_id IN
(SELECT * FROM season WHERE show_id = @show_id) AND
WHERE watch.user_id = @user _id
GROUP BY episode_id

42

5.5 Movie
2,0

TUuUu-rE E/AND A~ F AW AV EME

Star Wars: The Last Jedi

Three decades after the Empire's defeat, a new ?ijefgzify
threat arises in the militant First Order. Stormtrooper)
defector Finn and spare parts scavenger Rey-are Written by
. : . aai L Kasdan, J.J. Abrams,
Eal:ghst Ll(Jp |nI }t(he Resistance's search for the missing h;‘(’:"gggfimjﬁ ggorge Lucr:;“s
uke Skywalker.

Mark As Watched W 9.5 Rate Y¥ 2015

&> Harrison Ford Mark Hamill Carrie Fisher - 1 Adam Driver Daisy Ridley
B Hansolo e Luke Skywalker Princess Leia phl KyloRen Rey

Show All Cast

38 Comments |Z SortBy

o Write a comment

Dennis
Q Great movie!!l Great cast!l!
Reply @3 ®0 &0 &o &0 &0

View All 5

Kelly
| love this

Reply @3 ®0 &0 &o &0 &0

Show More Comments...

Inputs: @movie_id, @user_id, @body, @rate

Process:The movie screen has two main features. Firstly, when the movie screen is
opened, it displays details of the movie includes crew credits, user ratings, date of release
and plot summary. Also, user can see whether she watched, or rated movie. User can mark
as watched, if she watch this movie. Secondly,user can write and edit comments on movie.
Besides, user can see, reply and like comments by other users. Also, comments can be
filtered by count of reply or like.

43

SQL Statements:

Fetch Show Info:
SELECT * FROM movie WHERE movie _id = @movie _id

Fetch Comments:

SELECT comment.* FROM comment
INNER JOIN public_user ON comment.user_id = public_user.user_id
INNER JOIN movie _comment ON movie _comment.show_id = @movie _id

Fetch Comment Reactions:
SELECT reaction.*, comment_reaction.comment_id FROM reaction
INNER JOIN comment_reaction
ON comment_reaction.comment_id
IN (SELECT comment_id FROM comment
INNER JOIN movie_comment ON
movie_comment.show_id = @movie_id
)

GROUP BY comment_reaction.comment _id, reaction.reaction_type

Fetch Comment Replies:
SELECT comment.* FROM comment
INNER JOIN public_user ON comment.user_id = public_user.user_id
WHERE parent_id IN
(SELECT comment_id FROM comment
INNER JOIN movie_comment ON movie_comment.movie_id = @movie_id

)
GROUP BY parent_id

Create New Comment:

@uuid = Unique id generated by backend code

INSERT INTO comment(comment_id, body, user_id) VALUES(@uuid, @body, @user_id)
INSERT INTO movie_comment(comment_id, movie_id) VALUES(@uuid, @movie_id);

Fetch Is Watched:
SELECT COUNT(*) FROM watch,
INNER JOIN movie_watch ON
movie_watch.show_id = @movie_id
WHERE watch.user_id = @user_id

Fetch Is Rated:
SELECT rating FROM rate
INNER JOIN movie_rate ON
movie_rate.movie_id = @movie_id AND
rate.user_id = @user_id

Cast:

SELECT cast.* FROM act
INNER JOIN movie_act ON act.act_id = movie_act.act_id
INNER JOIN cast ON cast.cast_id = act.cast _id

Rate Movie(If It isn’t rated before):
@uuid = Unique id generated by backend script

INSERT INTO rating(rating_id, user _id, rating) VALUES (@uuid, @user _id, @rating)
INSERT INTO movie_rating(rating_id, movie_id) VALUES(@uuid,@movie_id);

Rate Movie (If It is already rated):
UPDATE rating SET rating=@rating
WHERE rating_id IN
(SELECT rating_id FROM show_rate WHERE movie_id = @movie_id) AND
user_id = @user _id

5.6 User Profile

Email: username@username.com
First Name: Name

Last Name: Last Name

Birthday: 08/08/1988

Password:

Inputs: @user_id
45

Process: When the User Profile screen is opened, previously current photo of user and
informations related to user are displayed. Users can change and edit their informations
includes password and user photo.

SQL Statements:

Fetch User Info:

GET user_email, user_firstname, user_last_name, user_birthday FROM user WHERE
user_id = @user_id;

Update User:

UPDATE user SET user_email = @user_email, user_firstname = @user_firstname,

user_lastname = @user_lastname, user_birthday = @user_birthday, user_password =
@user_password WHERE user_id = @user _id;

5.7 Friends

Search for a movie, show, user, artist ﬁ '3 o

Donnie

Dennis Remove From Friends List

Patrick Remove From Friends List

Inputs: @user_id, @second_user_id

Process: When the Friends screen is opened, user photo, pending friend requests and
current friends are displayed. User can approve or deny these friend requests. Also, user
can remove any friend from Friends List.

46

SQL Statements:
Fetch User photo:

SELECT image_url FROM user WHERE user_id = @user_id;
/lthen open the path and upload it

Fetching pending friend requests:

SELECT user_name, user_mail FROM user WHERE user id
IN (SELECT second_user_id FROM friendship
WHERE friendship_status = ‘PENDING’ AND first_user_id = @user_id)

Fetching current friends:

SELECT user_name, user_mail FROM user WHERE user _id
IN (SELECT second_user_id FROM friendship
WHERE friendship_status = ‘APPROVED’ AND first_user_id = @user_id)

Rejecting friendship request:

UPDATE friendship
SET status = ‘REJECTED’
WHERE first_user_id = @user_id AND second_user_id = @second_user_id;

Accepting friendship request:
UPDATE friendship

SET status = ‘APPROVED’
WHERE first_user_id = @user_id AND second_user_id = @second_user _id;

47

5.8 Homepage

Search for a movie, show, user, artist @ ‘3 o

BESTARNE

TLur EANAD -~ AW A ¥V E MC

Editors Choice of the Week: Star Wars: The Last Jedi

Three decades after the Empire's defeat, a new Directed by
threat arises in themilitant First Order. Stormtrooper J-J) Abrams
defector Finn and spare parts scavenger Rey-are Written by
caught up in the Resistance's search for the missing kﬁ’.ﬁ“ﬁi!fiﬁ?ﬁ"&é‘oﬂgi i
Luke Skywalker.
Mark As Watched % 9.5 Rateyy 2015

Today, 3:00 AM on USA Network Today, 2:00 AM on History
Mr. Robot SO03EQ7 Vikings SO5EQ1
eps3.6_fredrick+tanya.chk The Departed

Mr. Robot wants answers; the FBI closes in; Season premiere
Angela hits the rewind button.

Show All

Dennis commented on Star Wars: The Last Jedi
Great movie!!! Great cast!l!

Reply ®3 @0 @0 o &0 &o

View All 5 Replies wv

Kelly gave Mr. Robot Season 1 a rating of 9.7.
Reply @3 ®0 &0 &0 &0 &0

Will marked Mr. Robot Season 1 Episode eps1.0_hellofriend.mov as watched.

Reply 3 @0 &0 o &0 &o

Inputs: @user_id, @rate, @reaction_type, @watch_id, @comment_id, @body
Process: When the Homepage screen is opened, previously user can see movie and show
suggestions by the editors as “Choice of the Week”. User can see crew credits, user rate,
date of release of this suggested movie or show. Also, user can see whether she watched or
rated movie or show. Furthermore, homepage screen informed user about upcoming
episodes. Besides,user can write and edit comments on movie, show or episodes. User can
see, reply and like comments by other users. Moreover, user can search movie,show, user
or artist by using search tab.

SQL Statements:
Friends’ Activity Feed:

48

Upcoming Episodes:
SELECT episode.* FROM episode
INNER JOIN scheduled_episode ON
episode.episode_id =scheduled_episode.episode id
INNER JOIN medium ON medium.medium_id = scheduled_episode.episode _id
WHERE
DATE(scheduled_episode.time) BETWEEN
CURDATE() AND CURDATE + interval 1 day
ORDER BY scheduled_episode.time DESC

Notifications:
SELECT * FROM notification WHERE user_id = @user_id AND seen_at IS NULL

Friend Feed:

Latest Comments:
Episode Comments
SELECT comment.*, episode.* FROM comment
INNER JOIN episode_comment ON
comment.comment_id = episode_comment.comment_id
INNER JOIN episode ON
episode.episode_id = episode_comment.episode _id
INNER JOIN public_user ON comment.user_id = public_user.user_id
WHERE comment.user_id IN (
SELECT second_user_id FROM friendship WHERE
first_user_id = @user_id AND
friendship_status = ‘APPROVED’
)

Season Comments
SELECT comment.*, episode.* FROM comment
INNER JOIN season_comment ON
comment.comment_id = season_comment.comment_id
INNER JOIN season ON
season.episode_id =season_comment.episode id
INNER JOIN public_user ON comment.user_id = public_user.user_id
WHERE comment.user_id IN (
SELECT second_user_id FROM friendship WHERE
first_user_id = @user_id AND
friendship_status = ‘APPROVED’
)

Show Comments
SELECT comment.*, episode.* FROM comment
INNER JOIN show_comment ON
comment.comment_id = show_comment.comment_id
INNER JOIN show ON

49

show.show_id =show_comment.show_id
INNER JOIN public_user ON comment.user_id = public_user.user_id
WHERE comment.user_id IN (
SELECT second_user_id FROM friendship WHERE
first_user_id = @user_id AND
friendship_status = ‘APPROVED’
)

Movie Comments
SELECT comment.*, episode.* FROM comment
INNER JOIN movie_comment ON
comment.comment_id = movie_comment.comment_id
INNER JOINmovie ON
movie.movie_id =movie_comment.show_id
WHERE comment.user_id IN (
SELECT second_user_id FROM friendship WHERE
first_user_id = @user_id AND
friendship_status = ‘APPROVED’

Latest Watches:

Episode Watches
SELECT watch.*, episode.* FROM watch
INNER JOIN episode_watch ON
watch.watch_id = episode_watch.watch_id
INNER JOIN episode ON
episode.episode_id = episode_watch.episode_id
INNER JOIN public_user ON watch.user_id = public_user.user _id
WHERE watch.user_id IN (
SELECT second_user_id FROM friendship WHERE
first_user_id = @user_id AND
friendship_status = ‘APPROVED’
)

Season Watches
SELECT watch.*, episode.* FROM watch
INNER JOIN season_watch ON
watch.watch_id = season_watch.watch_id
INNER JOIN season ON
season.episode_id =season_watch.episode _id
INNER JOIN public_user ON watch.user_id = public_user.user_id
WHERE watch.user_id IN (
SELECT second_user_id FROM friendship WHERE
first_user_id = @user_id AND
friendship_status = ‘APPROVED’

50

Show Watches
SELECT watch.*, episode.* FROM watch
INNER JOIN show_watch ON
watch.watch_id = show_watch.watch_id
INNER JOIN show ON
show.show_id =show_watch.show_id
INNER JOIN public_user ON watch.user_id = public_user.user_id
WHERE watch.user_id IN (
SELECT second_user_id FROM friendship WHERE
first_user_id = @user_id AND
friendship_status = ‘APPROVED’
)

Movie Watches
SELECT watch.*, episode.* FROM comments
INNER JOIN movie_watch ON
watch.watch_id = movie_watch.watch_id
INNER JOIN movie ON
movie.movie_id =movie_watch.show_id
WHERE watch.user_id IN (
SELECT second_user_id FROM friendship WHERE
first_user_id = @user_id AND
friendship_status = ‘APPROVED’

Create Watch Reaction:
@uuid = Unique id generated by backend script

INSERT INTO reaction(reaction_id, reaction_type, user_id)
VALUES (@uuid, @reaction_type, @user_id)

INSERT INTO watch_reaction(watch_id, reaction_id) VALUES (@watch_id, @uuid)

Create Comment Reaction:
@uuid = Unique id generated by backend script

INSERT INTO reaction(reaction_id, reaction_type, user_id)
VALUES (@uuid, @reaction_type, @user_id)

INSERT INTO comment_reaction(watch_id, reaction_id) VALUES (@comment_id, @uuid)
Create Watch Comment:

@uuid = Unique id generated by backend script

INSERT INTO comment(comment_id, body, user_id)
VALUES (@uuid, @body, @user _id)

51

INSERT INTO watch_comment(watch_id,comment_id) VALUES (@watch_id, @uuid)

Create Comment Reply:
@uuid = Unique id generated by backend script

INSERT INTO comment(comment_id, body, user_id, parent_id)
VALUES (@uuid, @body, @user_id, @comment_id)

5.9 Medium

Search for a movie, show, user, artist

USA Network
Watch Online

L Mr. Robot SO03EQ7 Vikings SO5EQ1

-

Mr. Robot wants answers; the FBI closes in; Season premiere
Angela hits the rewind button.

-

! : w eps3.6_fredrick+tanya.chk The Departed
—4

Show All

-

1 f‘ Mr. Robot SO3EQ7 Vikings SO5EOQ1
' eps3.6_fredrick+tanya.chk The Departed

Mr. Robot wants answers; the FBI closes in; Season premiere
Angela hits the rewind button.

~ —

4

Show All

Inputs: @medium_id

B s @

52

Process: When the Medium screen is opened, it displays all the available episodes of this
channel. User can see broadcast dates of the shows with their plot summary. Also, user can
be guided to link in order to watch online this channel.

SQL Statements:

Fetch all the available episodes on channel:

SELECT episode_name, episode_info, trailer_url, date FROM episode
NATURAL JOIN

(SELECT episode_id, DATE(time) as date FROM scheduled_episode
WHERE medium_id = @medium_id GROUP BY date)

5.10 Calendar View

Search for a movie, show, user, artist

Filter by name

[

-

et |
Show All

1= Sort By

Today, 3:00 AM on USA Network

Mr. Robot SO3EQ7
eps3.6_fredrick+tanya.chk

Mr. Robot wants answers; the FBI closes in;
Angela hits the rewind button.

Tomorrow, 3:00 AM on USA Network
Curabitur lobor.

Lorem ipsum dolor sit am.

Donec facilisis tortor ut augue lacinia, at
viverra est semper. Sed sapien metus...

Thursday, November 23, 3:00 AM on USA Network
Curabitur lobor.

Lorem ipsum dolor sit am.

Donec facilisis tortor ut augue lacinia, at
viverra est semper. Sed sapien metus...

m s @

Today, 2:00 AM on History
Vikings SO5EQ1
The Departed

Season premiere

Tomorrow, 2:00 AM on History
Retro occupy.
Kogi Cosby.

Synth polaroid.

Friday, November 24, 2:00 AM on History
Retro occupy.
Kogi Cosby.
Synth polaroid.

Inputs: @name, @date, @orderby

Process: When the Calendar View screen is opened, it displays broadcast dates of tv
shows and movies. User can sort shows and movies by their broadcast dates. Besides, user
can filter shows and movies by their names for detailed search.

SQL Statements:
Fetch All Shows with Their Broadcast Dates:

SELECT * FROM show

NATURAL JOIN

(SELECT episode_id, DATE(time) as date FROM scheduled_episode
GROUP BY date)

Filter Show by Broadcast Date:

SELECT * FROM show

NATURAL JOIN

(SELECT episode_id, DATE(time) as date FROM scheduled_episode
GROUP BY date)

ORDER BY

CASE WHEN @orderby = ‘ASC’ THEN date END ASC,

CASE WHEN @orderby = ‘DESC’ THEN date END DESC;

Filter Movie by Broadcast Date:

SELECT * FROM movie

ORDER BY

CASE WHEN @orderby = ‘ASC’ THEN release_date END ASC,
CASE WHEN @orderby = ‘DESC’ THEN release_date END DESC,;

Filter Show by Name:

SELECT * FROM show

NATURAL JOIN

(SELECT episode_id, DATE(time) as date FROM scheduled_episode
GROUP BY date)

ORDER BY

CASE WHEN @orderby = ‘ASC’ THEN show_name END ASC,
CASE WHEN @orderby = ‘DESC’ THEN show_name END DESC;

Filter Movie by Name:

SELECT * FROM movie

ORDER BY

CASE WHEN @orderby = ‘ASC’ THEN movie_name END ASC,
CASE WHEN @orderby = ‘DESC’ THEN movie_name END DESC;

54

5.11 Admin Dashboard
Search for a movie, show, user, artist ﬁ ‘3 o

+ +

Create TV Show Create Movie

+ +

Create TV Medium Create Artist

Admin may open dashboard to create new movie, tv show, medium or artist. Admin
dashboard is entry point for all insertion/deletion operations.

55

5.11.1. Create New TV Show

Search for a movie, show, user, artist @ ’3 0

Name:
Description:
Trailer Url:
Image Urls:

Starting Year:

Medium: Not Selected

Inputs: @show_name, @show_info, @trailer_url, @start_year, @medium, @image_urls
Process : When the Admin Dashboard screen is opened, admin can create TV show.
SQL Statements :

INSERT INTO movie (show_name, show_info, trailer_url, start_year, medium, image_urls)
VALUES(@show_name, @show_info, @trailer_url, @start_year, @medium, @image_urls);

56

5.11.2. Create New Movie

Search for a movie, show, user, artist ﬁ ‘3 o

Name:
Description:
Trailer Url:
Image Urls:

Release Date:
Genre: Not Selected

Cancel

Inputs: @movie_name, @movie_description, @genre, @release_date, @trailer_url,
@image _urls

Process : When the Admin Dashboard screen is opened, admin can create TV show.
SQL Statements :
INSERT INTO movie (movie_name, movie_description, genre, release_date, trailer_url,

image_urls) VALUES(@movie_name, @movie_description, @genre, @release_date,
@trailer_url, @image_urls);

57

5.11.3. Create New Medium

Search for a movie, show, user, artist @ ‘3 0

Name:
Information:

Image Urls:

Inputs: @medium_name, @medium_info, @image_urls

Process : After Admin successfully entered the admin dashboard, he can create new
medium.

SQL Statements :
INSERT INTO medium(medium_name,medium_info, image_urls)
VALUES(@medium_name, @medium_info, @image_urls);

58

5.11.4. Create New Cast

Search for a movie, show, user, artist ﬁ ‘3 o

Name:

Information:
Image Urls:

Birthday

Cancel

Inputs: @cast_name, @cast_info, @cast_image, @cast_birthday
Process:
After Admin successfully entered the admin dashboard, he can create new cast member.

SQL Statements:

INSERT INTO cast(cast_name, cast_info, cast_birthday)
VALUES(@cast_name, @cast_info, @cast_birthday)

59

5.14. Modify/Delete TV Show

Search for a movie, show, user, artist ﬁ ‘3 o

MR. Robot & Directed by #*

Mr. Robot follows Elliot Alderson, a young computer Niels Arden Oplev
programmer with an anxiety disorder, who is recruited Written by
by Mr Robot and his anarchist team of hackers Sam Esmail
fsociety'. 4
3 Seasons

Mr. Robot: Season 3 Mr. Robot: Season 2

oy
2017, USA, 9 episodes 2016, USA, 12 episodes

EI istian Slater ﬂ Rarni Malek Carly Chaikin artin Wallstrom
Bl - Robot o s @ Darlene 5 R

Show All Cast

Inputs: @episode_no, @episode_name, @show_id, @season_id, @act_id, @image_urls,
@episode_info, @trailer_url

Process:

By clicking pen icons near the information, admin can make them editable. After making
them editable, admin can change their values. In order to delete the show or episode, admin
can press the Delete button. Clicking the plus button opens up the season creation modal.
By filling that modal admin can add new seasons to show. By clicking red remove icons
inside the season cards, admin can remove seasons from show. Similarly admin can add or
remove artists to cast of show.

60

SQL Statements:
Delete TV Show:

DELETE FROM show
WHERE show._id = @show._id;

Create New episode on TV Show:

INSERT INTO episode(episode _no, episode_name, show_id, season_id, act_id, image_urls,
episode_info, trailer_url)

VALUES(@episode_no, @episode_name, @show_id, @season_id, @act_id, @image_urls,
@episode_info, @trailer_url);

Update episodes:

UPDATE episode

SET trailer_url = @trailer_url,
episode_name = @episode_name,
episode_info = @episode_info,
image_urls = @image_urls,

WHERE episode_id = @episode _id;

Delete Episode:

DELETE FROM episode
WHERE episode_id = @episode_id;

5.15. Add/Delete Scheduled Episode

Inputs: @medium_id, @time, @episode_id

Process: To schedule episode on medium, admin should select medium and episode with
available timeslot. So system should check all scheduled episodes by their time and get
empty slots. As well as adding new episode to channel, admin is able to delete occupied
episode from channel/medium.

61

SQL Statements:
Fetch scheduled episodes on medium:

SELECT * FROM sheduled_episode where medium_id = @medium_id
AND time = @time;
/this displays the scheduled episodes and admin may see them to delete

Delete scheduled episode from medium:

DELETE FROM scheduled_episode
where episode_id = @episode_id;
/l admin may cancel schedule

Fetch unscheduled episodes on medium:

SELECT time FROM sheduled_episode where medium_id = @medium_id
AND time <> @time;

Schedule episode on medium:

INSERT INTO scheduled_episode(episode_id, medium_id, time)
VALUES(@episode_id, @medium_id, @time)

5.16. Modify/Delete Movie

Inputs: @movie_id (binded to ‘X’ button) -> for Delete
@movie_id, @movie_name, @movie_description, @genre, @imdb_rating,
@trailer_url, @release_date -> for Modify

Process: Admin can delete the movie from the database by clicking the ‘X’ button on the
movie page. Also he can modify the attributes of it.

SQL Statements:
DELETE FROM movie WHERE movie_id = @movie_id;

UPDATE movie

SET movie_name = @movie_name,
movie_description = @movie_description,
genre = @genre,
imdb_rating = @imdb_rating,
trailer_url = @trailer_url,

62

release_date = @release_date
WHERE movie_id = @movie_id;

5.17. Modify/Delete Cast

Inputs: @cast_id -> for Delete
@cast_id, @cast_name, @cast_image, @cast_info, @cast_birthday -> for
Update

Process: Admin can delete the cast member from the database by clicking the ‘X’ button on
the cast member page. Also he can modify the attributes of it.

SQL Statements:
DELETE FROM cast WHERE cast_id = @cast_id;

UPDATE cast

SET cast_name = @cast_name,
cast_image_url = @cast_image_url,
cast_info = @cast_info,
cast_birthday = @cast_birthday,

WHERE cast_id = @cast _id;

5.18. Modify/Delete Medium

Inputs: @medium_id -> for Delete
@medium_id, @medium_name, @medium_info, @image_urls -> for Modify

Process: Admin can delete the medium from the database by clicking the ‘X’ button on the
cast member page. Also he can modify the attributes of it.

SQL Statements:
DELETE FROM medium WHERE medium_id = @medium_id;

UPDATE medium

SET medium_name = @medium_name,
image_urls = @image _urls,
medium_info = @medium_info,

WHERE medium_id = @medium_id;

63

6. Advanced Database Components

6.1 Views

Public User:
CREATE VIEW public_user AS
SELECT user_id, user_name, age, avatar_image_id, user_firstname,
User_lastname FROM user WHERE user_type <> ‘Admin’

6.2 Stored Procedures

Fuzzy Search:

It allows to search for an arbitrary string, it returns most similar movie names,
tv show names, usernames etc. sorted by their similarity value. This similarity can be
calculated with levenshtein distance.

6.3 Reports

Most Watched Shows:
SELECT show_name, COUNT(*) as watch_count FROM show
INNER JOIN show_watch ON
show.show_id = show_watch.show_id
GROUP BY show_name
ORDER BY watch_count DESC

Most Active Mediums:
SELECT medium_name, COUNT(*) as scheduled_episode_count FROM medium
INNER JOIN scheduled_episode ON
scheduled_episode.medium_id = medium.medium_id
GROUP BY medium_name
ORDER BY scheduled_episode count DESC

Most Active Users:

SELECT username, COUNT(*) as watch_count FROM user
INNER JOIN watch ON watch.user _id = user.user _id
GROUP BY username
ORDER BY watch_count DESC

64

6.4 Triggers

e When a comment or reaction made to a user’s activity, system creates a new
notification that belongs to a user with related text and link attributes.
When a show is deleted, system will delete all subscriptions to that show.
When an episode is deleted, system will delete all ScheduledEpisodes related
to that episode.

6.5. Constraints

Users and admins must be authenticated before using the Trackby.me
Users’ sensitive information and credentials must be encrypted before stored in our
database.

e Users must read and accept the privacy & data policy agreements before using the
application.

e Only admins can modify/delete movies, TV series, comments. Normal users cannot
be able to do any kind of unauthorized actions.

e When any kind of movie, episode, medium or TV series deleted from the database,
the all respective relations will be deleted simultaneously. For instance, if admin
delete “Cars 3" movie; comments, rating value, discussions about “Cars 3” will also
be deleted.

User cannot mark movies, episodes as watched before their air date.
User cannot give multiple ratings to one show, he can only change the previous
rating.

e User cannot make unlimited comments that cause spamming.

65

/. Implementation Plan

We have decided to use following technologies for the respective parts of the application:

Frontend: React.js

Backend: Micro-services for each of the operations. These services can be implemented
with different programming languages, frameworks. (Node.js, Go, Python, Spring)

Storage: PostgreSQL.

66

